Summer Time Dustfall Fluxes of Reactive Nitrogen and Other Inorganic Species over the Tropical Megacity of Indo-Gangetic Plains

Reema Tiwari School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India

Search for other papers by Reema Tiwari in
Current site
Google Scholar
PubMed
Close
,
Gyan Prakash Gupta School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India

Search for other papers by Gyan Prakash Gupta in
Current site
Google Scholar
PubMed
Close
, and
U. C. Kulshrestha School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India

Search for other papers by U. C. Kulshrestha in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The rising emissions of reactive nitrogen (Nr) from transport, industrial, and agricultural sectors in India have resulted in its consequent interactions with the removal mechanism of the atmospheric dust. This study, therefore, reports the fluxes of reactive nitrogen along with other inorganic species through dustfall over six sites of Delhi–National Capital Region (NCR) characterized by the changing dynamics of its different land-use pattern. The highest Nr fluxes were observed at site SMA Industrial estate (SMA; NO3 = 16.45 ± 10.17 mg m−2 day−1, NH4+ = 16.33 ± 16.00 mg m−2 day−1) and lowest at site Chuchchakwas village (CV; NO3 = 1.24 ± 0.16 mg m−2 day−1, NH4+ = 0 mg m−2 day−1). Sites Mukherjee Nagar (MN), Peeragarhi Chowk (PC), Jawaharlal Nehru University (JNU), and Noida Phase II (N-II), on the other hand, showed 3.59 ± 1.00, 3.39 ± 0.61, 2.98 ± 0.84, and 3.36 ± 0.78 mg m−2 day−1 of NO3 fluxes and 0.30 ± 0.06, 0.22 ± 0.04, 0.21 ± 0.04, and 0.22 ± 0.05 mg m−2 day−1 of NH4+ fluxes, respectively. The fraction of the total ions in the water soluble extract of the dustfall was also noticed to be the highest at the SMA site (22.2%) and lowest at the CV site (1.5%) with MN, PC, JNU, and N-II showing 3.5%, 3.7%, 2.9%, and 3.9% of their respective contributions. Relative abundances of Ca2+ and SO42− in the dustfall substantiated the stoichiometric reactions involved in Nr scavenging. The role of Ca2+ in the spatiotemporal variability of Nr fluxes was established with the help of neutralization ratios and regression plots. Morphological and particle size analysis further confirmed the anthropogenic-induced crustal interferences in the summertime dustfall fluxes of Nr species.

Corresponding author address: U. C. Kulshrestha, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India. E-mail address: umeshkulshrestha@gmail.com

Abstract

The rising emissions of reactive nitrogen (Nr) from transport, industrial, and agricultural sectors in India have resulted in its consequent interactions with the removal mechanism of the atmospheric dust. This study, therefore, reports the fluxes of reactive nitrogen along with other inorganic species through dustfall over six sites of Delhi–National Capital Region (NCR) characterized by the changing dynamics of its different land-use pattern. The highest Nr fluxes were observed at site SMA Industrial estate (SMA; NO3 = 16.45 ± 10.17 mg m−2 day−1, NH4+ = 16.33 ± 16.00 mg m−2 day−1) and lowest at site Chuchchakwas village (CV; NO3 = 1.24 ± 0.16 mg m−2 day−1, NH4+ = 0 mg m−2 day−1). Sites Mukherjee Nagar (MN), Peeragarhi Chowk (PC), Jawaharlal Nehru University (JNU), and Noida Phase II (N-II), on the other hand, showed 3.59 ± 1.00, 3.39 ± 0.61, 2.98 ± 0.84, and 3.36 ± 0.78 mg m−2 day−1 of NO3 fluxes and 0.30 ± 0.06, 0.22 ± 0.04, 0.21 ± 0.04, and 0.22 ± 0.05 mg m−2 day−1 of NH4+ fluxes, respectively. The fraction of the total ions in the water soluble extract of the dustfall was also noticed to be the highest at the SMA site (22.2%) and lowest at the CV site (1.5%) with MN, PC, JNU, and N-II showing 3.5%, 3.7%, 2.9%, and 3.9% of their respective contributions. Relative abundances of Ca2+ and SO42− in the dustfall substantiated the stoichiometric reactions involved in Nr scavenging. The role of Ca2+ in the spatiotemporal variability of Nr fluxes was established with the help of neutralization ratios and regression plots. Morphological and particle size analysis further confirmed the anthropogenic-induced crustal interferences in the summertime dustfall fluxes of Nr species.

Corresponding author address: U. C. Kulshrestha, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India. E-mail address: umeshkulshrestha@gmail.com
Save
  • Alahmr, F. O. M., M. Othman, N. B. A. Wahid, A. A. Halim, and M. T. Latif, 2012: Compositions of dust fall around semi-urban areas in Malaysia. Aerosol Air Qual. Res., 12, 629642, doi:10.4209/aaqr.2012.02.0027.

    • Search Google Scholar
    • Export Citation
  • Anderson, N., R. Strader, and C. Davidson, 2003: Airborne reduced nitrogen: Ammonia emissions from agriculture and other sources. Environ. Int., 29, 277286, doi:10.1016/S0160-4120(02)00186-1.

    • Search Google Scholar
    • Export Citation
  • Berkowitz, C. M., T. Jobson, G. Jiang, C. W. Spicer, and P. V. Doskey, 2004: Chemical and meteorological characteristics associated with rapid increases of O3 in Houston, Texas. J. Geophys. Res., 109, D10307, doi:10.1029/2003JD004141.

    • Search Google Scholar
    • Export Citation
  • Budhavant, K. B, P. S. P. Rao, P. D. Safai, R. D. Gawhane, M. P. Raju, C. M. Mahajan, and P. G. Satsangi, 2012: Atmospheric wet and dry depositions of ions over an urban location in South-West India. Aerosol Air Qual. Res., 12, 561570, doi:10.4209/aaqr.2011.12.0233.

    • Search Google Scholar
    • Export Citation
  • Calvo, A. I., C. Alves, A. Castro, V. Pont, A. M. Vicente, and R. Fraile, 2013: Research on aerosol sources and chemical composition: Past, current and emerging issues. Atmos. Res., 120–121, 128, doi:10.1016/j.atmosres.2012.09.021.

    • Search Google Scholar
    • Export Citation
  • Davidson, C. I., S. E. Lindberg, J. A. Schmidt, L. G. Cartwright, and L. R. Landis, 1985: Dry deposition of sulfate onto surrogate surfaces. J. Geophys. Res., 90, 21232130, doi:10.1029/JD090iD01p02123.

    • Search Google Scholar
    • Export Citation
  • Dentener, F., and Coauthors, 2006: Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochem. Cycles, 20, GB4003, doi:10.1029/2005GB002672.

    • Search Google Scholar
    • Export Citation
  • Galloway, J. N., and Coauthors, 2004: Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153226, doi:10.1007/s10533-004-0370-0.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., and J. R. Anderson, 2001: Characteristics of Chinese aerosols determined by individual‐particle analysis. J. Geophys. Res., 106, 18 03718 045, doi:10.1029/2000JD900725.

    • Search Google Scholar
    • Export Citation
  • Ghosh, S., and Coauthors, 2014: Chemical characterization of summertime dust events at Kanpur: Insight into the sources and level of mixing with anthropogenic emissions. Aerosol Air Qual. Res., 14, 879891, doi:10.4209/aaqr.2013.07.0240.

    • Search Google Scholar
    • Export Citation
  • Goossens, D., and Z. Y. Offer, 1994: An evaluation of the efficiency of some eolian dust collectors. Soil Technol., 7, 2535, doi:10.1016/0933-3630(94)90004-3.

    • Search Google Scholar
    • Export Citation
  • Hales, J. M., B. B. Hicks, and J. M. Miller, 1987: The role of research measurement networks as contributions to federal assessments of acid deposition. Bull. Amer. Meteor. Soc., 68, 216225, doi:10.1175/1520-0477(1987)068<0216:TRORMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • International Joint Commission, 2010: Canada–United States air quality agreement progress report 2010. International Joint Commission Rep., 84 pp. [Available online at http://www.ijc.org/files/tinymce/uploaded/documents/2010%20Progress%20report%20on%20the%20Air%20Quality%20Agreement.pdf.]

  • Katz, M., 1969: Measurement of Air Pollutants: Guide to Selection of Methods. World Health Organization, 123 pp.

  • Kulshrestha, U. C., 2013: Acid rain. Encyclopedia of Environmental Management, Taylor & Francis, 8–22.

  • Kulshrestha, U. C., K. Sarkar, S. S. Srivastava, and D. C. Parashar, 1996: Investigation into atmospheric deposition through precipitation studies at New Delhi (India). Atmos. Environ., 30, 41494154, doi:10.1016/1352-2310(96)00034-9.

    • Search Google Scholar
    • Export Citation
  • Kulshrestha, U. C., A. Saxena, N. Kumar, K. M. Kumari, and S. S. Srivastava, 1998: Chemical composition and association of size-differentiated aerosols at a suburban site in a semi-arid tract of India. J. Atmos. Chem., 29, 109118, doi:10.1023/A:1005796400044.

    • Search Google Scholar
    • Export Citation
  • Kulshrestha, U. C., L. Granat, and H. Rodhe, 2003: Precipitation chemistry studies in India: A search for regional patterns. Department of Meteorology, Stockholm University Rep. CM 99, 58 pp.

  • Kulshrestha, U. C., L. A. K. Reddy, J. Satyanarayana, and M. J. Kulshrestha, 2009: Real-time wet scavenging of major chemical constituents of aerosols and role of rain intensity in Indian region. Atmos. Environ., 43, 51235127, doi:10.1016/j.atmosenv.2009.07.025.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. M. Sarin, 2010: Atmospheric water-soluble constituents in fine and coarse mode aerosols from high-altitude site in western India: Long-range transport and seasonal variability. Atmos. Environ., 44, 12451254, doi:10.1016/j.atmosenv.2009.12.035.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. M. Sarin, and A. K. Sudheer, 2008: Mineral and anthropogenic aerosols in Arabian Sea–atmospheric boundary layer: Sources and spatial variability. Atmos. Environ., 42, 51695181, doi:10.1016/j.atmosenv.2008.03.004.

    • Search Google Scholar
    • Export Citation
  • Metzger, S., N. Mihalopoulos, and J. Lelieveld, 2006: Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds: Case study based on MINOS results. Atmos. Chem. Phys., 6, 25492567, doi:10.5194/acp-6-2549-2006.

    • Search Google Scholar
    • Export Citation
  • Morselli, L., M. Cecchini, E. Grand, A. Iannuccilli, L. Barilli, and P. Olivieri, 1999: Heavy metals in atmospheric surrogate dry deposition. Chemosphere, 38, 899907, doi:10.1016/S0045-6535(98)00309-9.

    • Search Google Scholar
    • Export Citation
  • Pachauri, T., V. Singla, A. Satsangi, A. Lakhani, and K. Maharaj Kumari, 2013: SEM-EDX characterization of individual coarse particles in Agra, India. Aerosol Air Qual. Res., 13, 523536, doi:10.4209/aaqr.2012.04.0095.

    • Search Google Scholar
    • Export Citation
  • Phoenix, G. K., and Coauthors, 2006: Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts. Global Change Biol., 12, 470476, doi:10.1111/j.1365-2486.2006.01104.x.

    • Search Google Scholar
    • Export Citation
  • Rastogi, N., and M. M. Sarin, 2005: Long-term characterization of ionic species in aerosols from urban and high-altitude sites in western India: Role of mineral dust and anthropogenic sources. Atmos. Environ., 39, 55415554, doi:10.1016/j.atmosenv.2005.06.011.

    • Search Google Scholar
    • Export Citation
  • Rastogi, N., and M. Sarin, 2006: Atmospheric abundances of nitrogen species in rain and aerosols over a semi-arid region: Sources and deposition fluxes. Aerosol Air Qual. Res., 6, 406417.

    • Search Google Scholar
    • Export Citation
  • Reddington, C. L., E. W. Butt, D. A. Ridley, P. Artaxo, W. T. Morgan, H. Coe, and D. V Spracklen, 2015: Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nat. Geosci., 8, 768771, doi:10.1038/NGEO2535.

    • Search Google Scholar
    • Export Citation
  • Reis, S., R. W. Pinder, M. Zhang, G. Lijie, and M. A. Sutton, 2009: Reactive nitrogen in atmospheric emission inventories. Atmos. Chem. Phys., 9, 76577677, doi:10.5194/acp-9-7657-2009.

    • Search Google Scholar
    • Export Citation
  • Rengarajan, R., M. M. Sarin, and K. Sudheer, 2007: Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in north India. J. Geophys. Res., 112, D21307, doi:10.1029/2006JD008150.

    • Search Google Scholar
    • Export Citation
  • Ruijrok, W., C. I. Davidson, and W. Nicholson, 1995: Dry deposition of particles. Tellus, 47B, 587601.

  • Salam, A., H. Bauer, K. Kassin, S. M. Ullah, and H. Puxbaum, 2003: Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka–Bangladesh). Atmos. Environ., 37, 25172528, doi:10.1016/S1352-2310(03)00135-3.

    • Search Google Scholar
    • Export Citation
  • Satsangi, A., T. Pachauri, V. Singla, A. Lakhani, and K. Maharaj Kumari, 2013: Water soluble ionic species in atmospheric aerosols: Concentrations and sources at Agra in the Indo-Gangetic Plain (IGP). Aerosol Air Qual. Res., 13, 18771889, doi:10.4209/aaqr.2012.08.0227.

    • Search Google Scholar
    • Export Citation
  • Satsangi, G. S., A. Lakhani, P. Khare, S. P. Singh, K. M. Kumari, and S. S. Srivastava, 2002: Measurements of major ion concentration in settled coarse particles and aerosols at a semiarid rural site in India. Environ. Int., 28, 17, doi:10.1016/S0160-4120(01)00122-2.

    • Search Google Scholar
    • Export Citation
  • Saxena, A., U. C. Kulshreshta, N. Kumar, K. M. Kumari, and S. S. Srivastava, 1992: Dry deposition of nitrate and sulphate on surrogate surfaces. Environ. Int., 18, 509513, doi:10.1016/0160-4120(92)90269-A.

    • Search Google Scholar
    • Export Citation
  • Singh, S., and U. C. Kulshrestha, 2012: Abundance and distribution of gaseous ammonia and particulate ammonium at Delhi, India. Biogeosciences, 9, 50235029, doi:10.5194/bg-9-5023-2012.

    • Search Google Scholar
    • Export Citation
  • Srivastava, A., and V. K. Jain, 2007: A study to characterize the suspended particulate matter in an indoor environment in Delhi, India. Build. Environ., 42, 20462052, doi:10.1016/j.buildenv.2006.03.007.

    • Search Google Scholar
    • Export Citation
  • Tørseth, K., and Coauthors, 2012: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys., 12, 54475481, doi:10.5194/acp-12-5447-2012.

    • Search Google Scholar
    • Export Citation
  • Usher, C. R., A. E. Michel, and V. H. Grassian, 2003: Reactions on mineral dust reactions on mineral dust. Chem. Rev., 103, 48834940, doi:10.1021/cr020657y.

    • Search Google Scholar
    • Export Citation
  • Venkataraman, C., C. K. Reddy, S. Josson, and M. S. Reddy, 2002: Aerosol size and chemical characteristics at Mumbai, India, during the INDOEX-IFP (1999). Atmos. Environ., 36, 19791991, doi:10.1016/S1352-2310(02)00167-X.

    • Search Google Scholar
    • Export Citation
  • Verma, S. K., M. K. Deb, Y. Suzuki, and Y. I. Tsai, 2010: Ion chemistry and source identification of coarse and fine aerosols in an urban area of eastern central India. Atmos. Res., 95, 6576, doi:10.1016/j.atmosres.2009.08.008.

    • Search Google Scholar
    • Export Citation
  • Vet, R., and Coauthors, 2014: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ., 93, 3100, doi:10.1016/j.atmosenv.2013.10.060.

    • Search Google Scholar
    • Export Citation
  • Vitousek, P. M., H. A. Mooney, J. Lubchenco, and J. M. Melillo, 1997: Human domination of Earth’s ecosystems. Science, 277, 494499, doi:10.1126/science.277.5325.494.

    • Search Google Scholar
    • Export Citation
  • Wexler, A. S., and J. H. Seinfeld, 1990: The distribution of ammonium salts among a size and composition dispersed aerosol. Atmos. Environ., 24A, 12311246, doi:10.1016/0960-1686(90)90088-5.

    • Search Google Scholar
    • Export Citation
  • Yun, H. J., S. M. Yi, and Y. P. Kim, 2002: Dry deposition fluxes of ambient particulate heavy metals in a small city, Korea. Atmos. Environ., 36, 54495458, doi:10.1016/S1352-2310(02)00660-X.

    • Search Google Scholar
    • Export Citation
  • Zarasvandi, A., E. J. M. Carranza, F. Moore, and F. Rastmanesh, 2011: Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). J. Geochem. Explor., 111, 138151, doi:10.1016/j.gexplo.2011.04.004.

    • Search Google Scholar
    • Export Citation
  • Zellweger, C., and Coauthors, 2002: Partitioning of reactive nitrogen (NOy) and dependence on meteorological conditions in the lower free troposphere. Atmos. Chem. Phys., 3, 779796, doi:10.5194/acp-3-779-2003.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., P. Peng, and J. Song, 2010: Research on flux of dry atmospheric falling dust and its characterization in a subtropical city, Guangzhou, South China. Air Qual. Atmos. Health, 3, 139147, doi:10.1007/s11869-009-0062-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2126 1753 100
PDF Downloads 261 43 6