• Bailey, T., and A. Gatrell, 1995: Interactive Spatial Data Analysis. Wiley, 413 pp.

  • Banerjee, S., A. E. Gelfand, A. O. Finley, and H. Sang, 2008: Gaussian predictive process models for large spatial data sets. J. Roy. Stat. Soc., 70B, 825848, doi:10.1111/j.1467-9868.2008.00663.x.

    • Search Google Scholar
    • Export Citation
  • Cressie, N., and C. K. Wikle, 2011: Statistics for Spatio-Temporal Data. Wiley, 588 pp.

  • Finley, A. O., 2011: Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence. Methods Ecol. Evol., 2, 143154, doi:10.1111/j.2041-210X.2010.00060.x.

    • Search Google Scholar
    • Export Citation
  • Fu, F. X., Y. Zhang, M. E. Warner, Y. Feng, J. Sun, and D. A. Hutchins, 2008: A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum. Harmful Algae, 7, 7690, doi:10.1016/j.hal.2007.05.006.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2007: Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dyn., 28, 381407, doi:10.1007/s00382-006-0187-8.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2008: Regional climate change projections for the Northeast USA. Mitigation Adapt. Strategies Global Change, 13, 425436, doi:10.1007/s11027-007-9133-2.

    • Search Google Scholar
    • Export Citation
  • Irish, R., J. Barker, S. Goward, and T. Arvidson, 2006: Characterization of the Landsat-7 ETM+ Automated Cloud-Cover Assessment (ACCA) algorithm. Photogramm. Eng. Remote Sensing, 72, 11791188, doi:10.14358/PERS.72.10.1179.

    • Search Google Scholar
    • Export Citation
  • Lenters, J., 2015: The Global Lake Temperature Collaboration (GLTC). LakeLine Magazine, Fall 2015, 9–12. [Available online at http://laketemperature.org/Documents/GLTC2015LL.pdf.]

  • Lenters, J., S. J. Hook, and P. McIntyre, 2012: Workshop examines warming of lakes worldwide. Eos, Trans. Amer. Geophys. Union, 93, 427, doi:10.1029/2012EO430004.

    • Search Google Scholar
    • Export Citation
  • Lindström, J., A. Szpiro, P. D. Sampson, S. Bergen, and L. Sheppard, 2013: SpatioTemporal: An R package for spatio-temporal modelling of air-pollution. R package, 34 pp. [Available online at https://cran.r-project.org/web/packages/SpatioTemporal/vignettes/ST_intro.pdf.]

  • Lindström, J., A. A. Szpiro, P. D. Sampson, A. P. Oron, M. Richards, T. V. Larson, and L. Sheppard, 2014: A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates. Environ. Ecol. Stat., 21, 411433, doi:10.1007/s10651-013-0261-4.

    • Search Google Scholar
    • Export Citation
  • Masek, J. G., 2006: A Landsat surface reflectance dataset for North America, 1990-2000. IEEE Geosci. Remote Sens. Lett., 3, 6872, doi:10.1109/LGRS.2005.857030.

    • Search Google Scholar
    • Export Citation
  • Matheron, G., 1963: Principles of geostatistics. Econ. Geol., 58, 12461266, doi:10.2113/gsecongeo.58.8.1246.

  • Moore, S. K., V. L. Trainer, N. J. Mantua, M. S. Parker, E. A. Laws, L. C. Backer, and L. E. Fleming, 2008: Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ. Health, 7, S4, doi:10.1186/1476-069X-7-S2-S4.

    • Search Google Scholar
    • Export Citation
  • Moore, S. K., N. J. Mantua, B. M. Hickey, and V. L. Trainer, 2009: Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. Harmful Algae, 8, 463477, doi:10.1016/j.hal.2008.10.003.

    • Search Google Scholar
    • Export Citation
  • Omernik, J. M., 1987: Ecoregion of the conterminous United States. Ann. Assoc. Amer. Geogr., 77, 118125, doi:10.1111/j.1467-8306.1987.tb00149.x.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. M., and Coauthors, 2015: Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett., 42, 10 77310 781, doi:10.1002/2015GL066235.

    • Search Google Scholar
    • Export Citation
  • Paerl, H. W., and J. Huisman, 2008: Blooms like it hot. Science, 320, 5758, doi:10.1126/science.1155398.

  • Paerl, H. W., and J. Huisman, 2009: Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep., 1, 2737, doi:10.1111/j.1758-2229.2008.00004.x.

    • Search Google Scholar
    • Export Citation
  • Paerl, H. W., and T. G. Otten, 2013: Harmful cyanobacterial blooms: Causes, consequences, and controls. Microbiol. Ecol., 65, 9951010, doi:10.1007/s00248-012-0159-y.

    • Search Google Scholar
    • Export Citation
  • Paerl, H. W., N. Hall, and E. Calandrino, 2011: Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climate-induced change. Sci. Total Environ., 409, 17391745, doi:10.1016/j.scitotenv.2011.02.001.

    • Search Google Scholar
    • Export Citation
  • Peña, E. A., and E. H. Slate, 2006: Global validation of linear model assumptions. J. Amer. Stat. Assoc., 101, 341354, doi:10.1198/016214505000000637.

    • Search Google Scholar
    • Export Citation
  • Rue, H., S. Martino, and N. Chopin, 2009: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J. Roy. Stat. Soc., 71B, 319392, doi:10.1111/j.1467-9868.2008.00700.x.

    • Search Google Scholar
    • Export Citation
  • Schneider, P., and S. J. Hook, 2010: Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett., 37, L22405, doi:10.1029/2010GL045059.

    • Search Google Scholar
    • Export Citation
  • Schneider, P., S. J. Hook, R. K. Radocinski, G. K. Corlett, S. G. Hulley, S. G. Schladow, and T. E. Steissberg, 2009: Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophys. Res. Lett., 36, L22402, doi:10.1029/2009GL040846.

    • Search Google Scholar
    • Export Citation
  • Schott, J. R., S. J. Hook, J. A. Barsi, B. L. Marham, J. Miller, F. P. Padula, and N. G. Raqueno, 2012: Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010). Remote Sens. Environ., 122, 4149, doi:10.1016/j.rse.2011.07.022.

    • Search Google Scholar
    • Export Citation
  • Stumpf, R., T. Wynne, D. Baker, and G. Fahnenstiel, 2012: Interannual variability of cyanobacterial blooms in Lake Erie. PLoS One, 7, e42444, doi:10.1371/journal.pone.0042444.

    • Search Google Scholar
    • Export Citation
  • Torbick, N. M., and M. Corbiere, 2015: Mapping urban sprawl and impervious surfaces in the Northeast United States for the past four decades. GIsci. Remote Sens., 52, 746764, doi:10.1080/15481603.2015.1076561.

    • Search Google Scholar
    • Export Citation
  • Torbick, N. M., S. Hession, S. Hagen, N. Wiangwang, B. Becker, and J. Qi, 2013: Mapping inland lake water quality across the lower peninsula of Michigan using Landsat TM imagery. Int. J. Remote Sens., 34, 76077624, doi:10.1080/01431161.2013.822602.

    • Search Google Scholar
    • Export Citation
  • Torbick, N. M., S. Hession, E. Stommel, and T. Caller, 2014: Mapping amyotrophic lateral sclerosis lake risk factors across northern New England. Int. J. Health Geographics, 13, 114, doi:10.1186/1476-072X-13-1.

    • Search Google Scholar
    • Export Citation
  • Wake, C., E. Burekowski, P. Wilkinson, K. Hayhoe, A. Stoner, C. Keely, and J. LaBranche, 2014: Climate change in northern New Hampshire: Past, present and future. The Sustainability Institute Rep., 76 pp. [Available online at https://sustainableunh.unh.edu/sites/sustainableunh.unh.edu/files/images/northernnhclimateassessment2014.pdf.]

  • Weyhenmeyer, G. A., M. Meili, and D. Livingstone, 2004: Nonlinear temperature response of lake ice breakup. Geophys. Res. Lett., 31, L07203, doi:10.1029/2004GL019530.

    • Search Google Scholar
    • Export Citation
  • Winslow, L., J. Read, G. Hansen, and P. Hanson, 2015: Small lakes show muted climate change signal in deepwater temperatures. Geophys. Res. Lett., 42, 355361, doi:10.1002/2014GL062325.

    • Search Google Scholar
    • Export Citation
  • Woodward, G., D. Perkins, and L. Brown, 2010: Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. Roy. Soc. London, B365, 20932106, doi:10.1098/rstb.2010.0055.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., T. Yao, H. Xie, J. Qin, Q. Ye, Y. Dai, and R. Guo, 2014: Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data. J. Geophys. Res. Atmos., 119, 85528567, doi:10.1002/2014JD021615.

    • Search Google Scholar
    • Export Citation
  • Zhong, Y., M. Notaro, S. Vavrus, and M. Foster, 2016: Recent accelerated warming of the Laurentian Great Lakes: Physical drivers. Limnol. Oceanogr., 61, 17621786, doi:10.1002/lno.10331.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 333 144 29
PDF Downloads 160 80 7

Spatiotemporal Lake Skin Summer Temperature Trends in the Northeast United States

Nathan TorbickApplied Geosolutions, Newmarket, New Hampshire

Search for other papers by Nathan Torbick in
Current site
Google Scholar
PubMed
Close
,
Beth ZinitiDepartment of Mathematics and Statistics, University of New Hampshire, Durham, New Hampshire

Search for other papers by Beth Ziniti in
Current site
Google Scholar
PubMed
Close
,
Shuang WuDepartment of Mathematics and Statistics, University of New Hampshire, Durham, New Hampshire

Search for other papers by Shuang Wu in
Current site
Google Scholar
PubMed
Close
, and
Ernst LinderDepartment of Mathematics and Statistics, University of New Hampshire, Durham, New Hampshire

Search for other papers by Ernst Linder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lakes have been suggested as an indicator of climate change; however, long-term, systematic records of lake temperature are limited. Satellite remote sensing is capable of supporting lake temperature mapping with the advantage of large-area and systematic observations. The goal of this research application was to assess spatiotemporal trends in lake skin temperature for all lakes over 8 ha across northern New England for the past three decades. Nearly 10 000 Landsat scenes for July, August, and September from 1984 to 2014 were processed using MODTRAN and MERRA parameterizations to generate atmospherically corrected lake skin temperature records. Results show, on average, lakes warmed at a rate of 0.8°C decade−1, with smaller lakes warming at a faster rate. Complementing regression and space–time analyses showed similar results (R2 = 0.63) for lake temperature trends and found lakes, on average, are warming faster than daily maximum or minimum air temperature. No major hot spots were found as lake temperature changes were heterogeneous on a local scale and evenly distributed across the region. Maximum and minimum daily temperature, lake size, and elevation were found as significant drivers of lake temperature. This effort provides the first regionally focused and comprehensive spatiotemporal assessment of thousands (n = 3955) of lakes concentrated in one geographic region. The approach is scalable and adaptable to any region for assessing lake temperature trends and potential drivers.

Corresponding author address: Nathan Torbick, Applied Geosolutions, 55 Main St., Suite 125, Newmarket, NH 03857. E-mail address: ntorbick@appliedgeosolutions.com

Abstract

Lakes have been suggested as an indicator of climate change; however, long-term, systematic records of lake temperature are limited. Satellite remote sensing is capable of supporting lake temperature mapping with the advantage of large-area and systematic observations. The goal of this research application was to assess spatiotemporal trends in lake skin temperature for all lakes over 8 ha across northern New England for the past three decades. Nearly 10 000 Landsat scenes for July, August, and September from 1984 to 2014 were processed using MODTRAN and MERRA parameterizations to generate atmospherically corrected lake skin temperature records. Results show, on average, lakes warmed at a rate of 0.8°C decade−1, with smaller lakes warming at a faster rate. Complementing regression and space–time analyses showed similar results (R2 = 0.63) for lake temperature trends and found lakes, on average, are warming faster than daily maximum or minimum air temperature. No major hot spots were found as lake temperature changes were heterogeneous on a local scale and evenly distributed across the region. Maximum and minimum daily temperature, lake size, and elevation were found as significant drivers of lake temperature. This effort provides the first regionally focused and comprehensive spatiotemporal assessment of thousands (n = 3955) of lakes concentrated in one geographic region. The approach is scalable and adaptable to any region for assessing lake temperature trends and potential drivers.

Corresponding author address: Nathan Torbick, Applied Geosolutions, 55 Main St., Suite 125, Newmarket, NH 03857. E-mail address: ntorbick@appliedgeosolutions.com
Save