The Impacts of Land-Use and Land-Cover Change on Tropospheric Temperatures at Global and Regional Scales

Weiyue Zhang Institute for Climate and Global Change Research and School of Atmospheric Sciences, Nanjing University, and Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, China

Search for other papers by Weiyue Zhang in
Current site
Google Scholar
PubMed
Close
,
Zhongfeng Xu Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, China

Search for other papers by Zhongfeng Xu in
Current site
Google Scholar
PubMed
Close
, and
Weidong Guo Institute for Climate and Global Change Research and School of Atmospheric Sciences, Nanjing University, and Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, China

Search for other papers by Weidong Guo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impacts of land-use and land-cover change (LULCC) on tropospheric temperatures are investigated in this study using the fully coupled Community Earth System Model. Two simulations are performed using potential and current vegetation cover. The results show that LULCC can induce detectable changes in the tropospheric air temperature. Although the influence of LULCC on tropospheric temperature is weak, a significant influence can still be found below 300 hPa in summer over land. Compared to the global-mean temperature change, LULCC-induced changes in the regional-mean air temperature can be 2–3 times larger in the middle–upper troposphere and approximately 8 times larger in the lower troposphere. In East Asia and South Asia, LULCC is shown to produce significant decreases (0.2° to 0.4°C) in air temperature in the middle–upper troposphere in spring and autumn due to the largest decrease in the latent heat release from precipitation. In Europe and North America, the most significant tropospheric cooling occurs in summer, which can be attributed to the significant decrease in the absorbed solar radiation and sensible heat flux during this season. In addition to local effects, LULCC also induces nonlocal responses in the tropospheric air temperature that are characterized by significant decreases over the leeward sides of LULCC regions, which include East Asia–western North Pacific Ocean, Mediterranean Sea–North Africa, North America–Atlantic Ocean, and North America–eastern Pacific. Cooling in the leeward sides of LULCC regions is primarily caused by an enhanced cold advection induced by LULCC.

Corresponding author address: Dr. Zhongfeng Xu, 40 Hua Yan Li, Qi Jia Huo Zi, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail address: xuzhf@tea.ac.cn

This article is included in the Biogeophysical Climate Impacts of Land Use and Land Cover Change (LULCC) special collection.

Abstract

The impacts of land-use and land-cover change (LULCC) on tropospheric temperatures are investigated in this study using the fully coupled Community Earth System Model. Two simulations are performed using potential and current vegetation cover. The results show that LULCC can induce detectable changes in the tropospheric air temperature. Although the influence of LULCC on tropospheric temperature is weak, a significant influence can still be found below 300 hPa in summer over land. Compared to the global-mean temperature change, LULCC-induced changes in the regional-mean air temperature can be 2–3 times larger in the middle–upper troposphere and approximately 8 times larger in the lower troposphere. In East Asia and South Asia, LULCC is shown to produce significant decreases (0.2° to 0.4°C) in air temperature in the middle–upper troposphere in spring and autumn due to the largest decrease in the latent heat release from precipitation. In Europe and North America, the most significant tropospheric cooling occurs in summer, which can be attributed to the significant decrease in the absorbed solar radiation and sensible heat flux during this season. In addition to local effects, LULCC also induces nonlocal responses in the tropospheric air temperature that are characterized by significant decreases over the leeward sides of LULCC regions, which include East Asia–western North Pacific Ocean, Mediterranean Sea–North Africa, North America–Atlantic Ocean, and North America–eastern Pacific. Cooling in the leeward sides of LULCC regions is primarily caused by an enhanced cold advection induced by LULCC.

Corresponding author address: Dr. Zhongfeng Xu, 40 Hua Yan Li, Qi Jia Huo Zi, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail address: xuzhf@tea.ac.cn

This article is included in the Biogeophysical Climate Impacts of Land Use and Land Cover Change (LULCC) special collection.

Save
  • Abe, M., A. Kitoh, and T. Yasunari, 2003: An evolution of the Asian summer monsoon associated with mountain uplift—Simulation with the MRI atmosphere-ocean coupled GCM. J. Meteor. Soc. Japan, 81, 909933, doi:10.2151/jmsj.81.909.

    • Search Google Scholar
    • Export Citation
  • Bala, G., K. Caldeira, M. Wickett, T. J. Phillips, D. B. Lobell, C. Delire, and A. Mirin, 2007: Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA, 104, 65506555, doi:10.1073/pnas.0608998104.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., P. D. Falloon, K. K. Goldewijk, and N. Ramankutty, 2007: Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. Agric. For. Meteor., 142, 216233, doi:10.1016/j.agrformet.2006.08.021.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., M. Holland, M. Eby, and A. J. Weaver, 2001: Simulating the ice-thickness distribution in a coupled climate model. J. Geophys. Res., 106, 24412463, doi:10.1029/1999JC000113.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, doi:10.1126/science.1155121.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., A. Ganopolski, M. Claussen, C. Kubatzki, and V. Petoukhov, 1999: Modeling climate response to historical land cover change. Global Ecol. Biogeogr., 8, 509517, doi:10.1046/j.1365-2699.1999.00169.x.

    • Search Google Scholar
    • Export Citation
  • Chase, T. N., R. A. Pielke, T. G. F. Kittel, R. P. Nemani, and S. W. Running, 1996: Sensitivity of a general circulation model to global changes in leaf area index. J. Geophys. Res., 101, 73937408, doi:10.1029/95JD02417.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131023, doi:10.1175/BAMS-84-8-1013.

  • Davin, E. L., and N. de Noblet-Ducoudré, 2010: Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Climate, 23, 97112, doi:10.1175/2009JCLI3102.1.

    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., and Coauthors, 2012: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Climate, 25, 32613281, doi:10.1175/JCLI-D-11-00338.1.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., and P. Kennedy, 1992: Impacts on regional climate of Amazon deforestation. Geophys. Res. Lett., 19, 19471950, doi:10.1029/92GL01905.

    • Search Google Scholar
    • Export Citation
  • Douglas, E. M., D. Niyogi, S. Frolking, J. B. Yeluripati, R. A. Pielke Sr., N. Niyogi, C. J. Vörösmarty, and U. C. Mohanty, 2006: Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian monsoon belt. Geophys. Res. Lett., 33, L14403, doi:10.1029/2006GL026550.

    • Search Google Scholar
    • Export Citation
  • Feddema, J. J., K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washington, 2005: The importance of land-cover change in simulating future climates. Science, 310, 16741678, doi:10.1126/science.1118160.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., T. R. Knutson, and P. C. D. Milly, 2006: Weak simulated extratropical responses to complete tropical deforestation. J. Climate, 19, 28352850, doi:10.1175/JCLI3737.1.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., A. J. Pitman, M. H. England, and P. J. Pegion, 2009: Regional and global impacts of land cover change and sea surface temperature anomalies. J. Climate, 22, 32483268, doi:10.1175/2008JCLI2580.1.

    • Search Google Scholar
    • Export Citation
  • Fu, C., 2003: Potential impacts of human-induced land cover change on East Asia monsoon. Global Planet. Change, 37, 219229, doi:10.1016/S0921-8181(02)00207-2.

    • Search Google Scholar
    • Export Citation
  • Haxeltine, A., and C. I. Prentice, 1996: BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem. Cycles, 10, 693709, doi:10.1029/96GB02344.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and Coauthors, 2006: The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Global Change Biol., 12, 12081229, doi:10.1111/j.1365-2486.2006.01150.x.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, Eds., 2000: Numerical Models of Oceans and Oceanic Process. International Geophysics Series, Vol. 66, Academic Press, 940 pp.

  • Kitoh, A., 2004: Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere–ocean GCM. J. Climate, 17, 783802, doi:10.1175/1520-0442(2004)017<0783:EOMUOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and T. N. Chase, 2010: Investigating the climate impacts of global land cover change in the community climate system model. Int. J. Climatol., 30, 20662087, doi:10.1002/joc.2061.

    • Search Google Scholar
    • Export Citation
  • Lee, E., T. N. Chase, B. Rajagopalan, R. Barry, T. W. Biggs, and P. J. Lawrence, 2009: Effects of irrigation and vegetation activity on early Indian summer monsoon variability. Int. J. Climatol., 29, 573581, doi:10.1002/joc.1721.

    • Search Google Scholar
    • Export Citation
  • Lin, S. J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lipscomb, W. H., 2001: Remapping the thickness distribution in sea ice models. J. Geophys. Res., 106, 13 98914 000, doi:10.1029/2000JC000518.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., G. Bala, and P. B. Duffy, 2006: Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett., 33, L06708, doi:10.1029/2005GL025492.

    • Search Google Scholar
    • Export Citation
  • Maynard, K., and J. F. Royer, 2004: Effects of “realistic” land-cover change on a greenhouse-warmed African climate. Climate Dyn., 22, 343358, doi:10.1007/s00382-003-0371-z.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, D. M. Lawrence, A. Seth, E. K. Schneider, B. P. Kirtman, and D. Min, 2006: Monsoon regimes in the CCSM3. J. Climate, 19, 24822495, doi:10.1175/JCLI3745.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. M. Caron, H. Annamalai, M. Jochum, A. Chakraborty, and R. Murtugudde, 2012: Monsoon regimes and processes in CCSM4. Part I: The Asian–Australian monsoon. J. Climate, 25, 25832608, doi:10.1175/JCLI-D-11-00184.1.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • Narisma, G. T., and A. J. Pitman, 2003: The impact of 200 years of land cover change on the Australian near-surface climate. J. Hydrometeor., 4, 424436, doi:10.1175/1525-7541(2003)4<424:TIOYOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., Y. K. Xue, and S. Raman, 2002: Hydrological land surface response in a tropical regime and a midlatitudinal regime. J. Hydrometeor., 3, 3956, doi:10.1175/1525-7541(2002)003<0039:HLSRIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., G. B. Bonan, S. Levis, and M. Vertenstein, 2004: Effects of land use change on U.S. climate: Impact of surface datasets and model biogeophysics. Climate Dyn., 23, 117132, doi:10.1007/s00382-004-0426-9.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177, doi:10.1029/1999RG000072.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., G. Marland, R. A. Betts, T. N. Chase, J. L. Eastman, J. O. Niles, D. Niyogi, and S. W. Running, 2002: The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. Roy. Soc. London, A360, 17051719, doi:10.1098/rsta.2002.1027.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, doi:10.1029/2009GL039076.

    • Search Google Scholar
    • Export Citation
  • Polcher, J., and K. Laval, 1994: A statistical study of the regional impacts of deforestation on climate in the LMD GCM. Climate Dyn., 10, 205219, doi:10.1007/BF00208988.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., and J. A. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13, 9971027, doi:10.1029/1999GB900046.

    • Search Google Scholar
    • Export Citation
  • Schneck, R., and V. Mosbrugger, 2011: Simulated climate effects of Southeast Asian deforestation: Regional processes and teleconnection mechanisms. J. Geophys. Res., 116, D11116, doi:10.1029/2010JD015450.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., C. Nobre, and P. Sellers, 1990: Amazon deforestation and climate change. Science, 247, 13221325, doi:10.1126/science.247.4948.1322.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual. Los Alamos National Laboratory Tech. Rep. LAUR-10-01853, 140 pp.

  • Snyder, P. K., 2010: The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interact., 14, doi:10.1175/2010EI280.1.

    • Search Google Scholar
    • Export Citation
  • Wohlfahrt, J., S. P. Harrison, and P. Braconnot, 2004: Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Climate Dyn., 22, 223238, doi:10.1007/s00382-003-0379-4.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., R. Mahmood, Z. L. Yang, C. Fu, and H. Su, 2015: Investigating diurnal and seasonal climatic response to land use and land cover change over monsoon Asia with the Community Earth System Model. J. Geophys. Res. Atmos., 120, 11371152, doi:10.1002/2014JD022479.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., A. Henderson-Sellers, and K. McGuffie, 1996: Impacts of tropical deforestation. Part I: Process analysis of local climatic change. J. Climate, 9, 14971517, doi:10.1175/1520-0442(1996)009<1497:IOTDPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., A. J. Pitman, and T. N. Chase, 2001: The impact of land cover change on the atmospheric circulation. Climate Dyn., 17, 467477, doi:10.1007/PL00013740.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. Z., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, doi:10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9867 8567 418
PDF Downloads 454 101 9