Short-Term Phenological Predictions of Vegetation Abundance Using Multivariate Adaptive Regression Splines in the Upper Colorado River Basin

Yuan Zhang Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yuan Zhang in
Current site
Google Scholar
PubMed
Close
and
George F. Hepner Department of Geography, University of Utah, Salt Lake City, Utah

Search for other papers by George F. Hepner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The accurate prediction of plant phenology is of significant importance for more sustainable and effective land management. This research develops a framework of phenological modeling to estimate vegetation abundance [indicated by the normalized difference vegetation index (NDVI)] 7 days into the future in the geographically diverse Upper Colorado River basin (UCRB). This framework uses phenological regions (phenoregions) as the basic units of modeling to account for the spatially variant environment–vegetation relationships. The temporal variation of the relationships is accounted for via the identification of phenological phases. The modeling technique of Multivariate Adaptive Regression Splines (MARS) is employed and tested as an approach to construct enhanced predictive phenological models in each phenoregion using a comprehensive set of environmental drivers and factors. MARS has the ability to deal with a large number of independent variables and to approximate complex relationships. The R2 values of the models range from 91.62% to 97.22%. The root-mean-square error values of all models are close to their respective standard errors ranging from 0.016 to 0.035, as indicated by the results of cross and field validations. These demonstrate that the modeling framework ensures the accurate prediction of short-term vegetation abundance in regions with various environmental conditions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/EI-D-16-0017.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail address: Yuan Zhang, zhangyuan76@126.com

Abstract

The accurate prediction of plant phenology is of significant importance for more sustainable and effective land management. This research develops a framework of phenological modeling to estimate vegetation abundance [indicated by the normalized difference vegetation index (NDVI)] 7 days into the future in the geographically diverse Upper Colorado River basin (UCRB). This framework uses phenological regions (phenoregions) as the basic units of modeling to account for the spatially variant environment–vegetation relationships. The temporal variation of the relationships is accounted for via the identification of phenological phases. The modeling technique of Multivariate Adaptive Regression Splines (MARS) is employed and tested as an approach to construct enhanced predictive phenological models in each phenoregion using a comprehensive set of environmental drivers and factors. MARS has the ability to deal with a large number of independent variables and to approximate complex relationships. The R2 values of the models range from 91.62% to 97.22%. The root-mean-square error values of all models are close to their respective standard errors ranging from 0.016 to 0.035, as indicated by the results of cross and field validations. These demonstrate that the modeling framework ensures the accurate prediction of short-term vegetation abundance in regions with various environmental conditions.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/EI-D-16-0017.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail address: Yuan Zhang, zhangyuan76@126.com

Supplementary Materials

    • Supplemental Materials (DOCX 702 KB)
Save
  • Ahrens, C. D., 2007: Meteorology Today: An Introduction to Weather, Climate, and the Environment. Thomson/Brooks/Cole, 624 pp.

  • Badeck, F.-W., A. Bondeau, K. Böttcher, D. Doktor, W. Lucht, J. Schaber, and S. Sitch, 2004: Responses of spring phenology to climate change. New Phytol., 162, 295309, doi:10.1111/j.1469-8137.2004.01059.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balshi, M. S., A. D. McGuire, P. Duffy, M. Flannigan, J. Walsh, and J. Melillo, 2009: Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Global Change Biol., 15, 578600, doi:10.1111/j.1365-2486.2008.01679.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batanouny, K. H., 2001: Plants in the Deserts of the Middle East. Springer, 193 pp.

  • Boke-Olén, N., V. Lehsten, J. Ardö, J. Beringer, L. Eklundh, T. Holst, E. Veenendaal, and T. Tagesson, 2016: Estimating and analyzing savannah phenology with a lagged time series model. PLoS One, 11, e0154615, doi:10.1371/journal.pone.0154615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruns, E., F.-M. Chmielewski, and A. J. H. Vanvliet, 2003: The global phenological monitoring concept. Phenology: An Integrative Environmental Science, M. D. Schwartz, Ed., Tasks for Vegetation Science Series, Vol. 39, Springer, 93–104.

    • Crossref
    • Export Citation
  • Campbell, R. K., 1974: Use of phenology for examining provenance transfers in reforestation of Douglas-fir. J. Appl. Ecol., 11, 10691080, doi:10.2307/2401766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardot, H., P. Maisongrande, and R. Faivre, 2008: Varying-time random effects models for longitudinal data: Unmixing and temporal interpolation of remote-sensing data. J. Appl. Stat., 35, 827846, doi:10.1080/02664760802061970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, F. X., A. Tudela, and M. T. Sebastià, 2003: Modeling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agric. For. Meteor., 116, 4959, doi:10.1016/S0168-1923(02)00248-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., P. Jönsson, M. Tamura, Z. Gu, B. Matsushita, and L. Eklundh, 2004: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ., 91, 332344, doi:10.1016/j.rse.2004.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, S.-M., T.-S. Lee, Y. E. Shao, and I. F. Chen, 2004: Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl., 27, 133142, doi:10.1016/j.eswa.2003.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleveland, R. B., W. S. Cleveland, J. E. McRae, and I. Terpenning, 1990: STL: A seasonal-trend decomposition procedure based on Loess. J. Off. Stat., 6, 333.

    • Search Google Scholar
    • Export Citation
  • Cui, L., J. Shi, Y. Yang, and W. Fan, 2009: Ten-day response of vegetation NDVI to the variations of temperature and precipitation in eastern China. Acta Geogr. Sin., 64, 850860.

    • Search Google Scholar
    • Export Citation
  • Dahlgren, J., L. Oksanen, M. Sjödin, and J. Olofsson, 2007: Interactions between gray-sided voles (Clethrionomys rufucanus) and bilberry (Vaccinium myrtillus), their main winter food plant. Oecologia, 152, 525532, doi:10.1007/s00442-007-0664-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davenport, M. L., and S. E. Nicholson, 1993: On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in East Africa. Int. J. Remote Sens., 14, 23692389, doi:10.1080/01431169308954042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elith, J., and J. Leathwick, 2007: Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Diversity Distrib., 13, 265275, doi:10.1111/j.1472-4642.2007.00340.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estrella, N., T. H. Sparks, and A. Menzel, 2007: Trends and temperature response in the phenology of crops in Germany. Global Change Biol., 13, 17371747, doi:10.1111/j.1365-2486.2007.01374.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitter, A. H., R. S. R. Fitter, I. T. B. Harris, and M. H. Williamson, 1995: Relationships between first flowering date and temperature in the flora of a locality in central England. Funct. Ecol., 9, 5560, doi:10.2307/2390090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fouillet, A., G. Rey, E. Jougla, P. Frayssinet, P. Bessemoulin, and D. Hémon, 2007: A predictive model relating daily fluctuations in summer temperatures and mortality rates. BMC Public Health, 7, 111, doi:10.1186/1471-2458-7-114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., 1991: Multivariate adaptive regression splines. Ann. Stat., 19, 167, doi:10.1214/aos/1176347963.

  • Friedman, J. H., and C. B. Roosen, 1995: An introduction to multivariate adaptive regression splines. Stat. Methods Med. Res., 4, 197217, doi:10.1177/096228029500400303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gessner, U., V. Naeimi, I. Klein, C. Kuenzer, D. Klein, and S. Dech, 2013: The relationship between precipitation anomalies and satellite-derived vegetation activity in central Asia. Global Planet. Change, 110A, 7487, doi:10.1016/j.gloplacha.2012.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargrove, W., and F. Hoffman, 2004: Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ. Manage., 34, S39S60, doi:10.1007/s00267-003-1084-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henebry, G. M., 2003: Grasslands of the North American Great Plains. Phenology: An Integrative Environmental Science, M. D. Schwartz, Ed., Tasks for Vegetation Science Series, Vol. 39, Springer, 157–174.

    • Crossref
    • Export Citation
  • Hermance, J. F., D. J. Augustine, and J. D. Derner, 2015: Quantifying characteristic growth dynamics in a semi-arid grassland ecosystem by predicting short-term NDVI phenology from daily rainfall: A simple four parameter coupled-reservoir model. Int. J. Remote Sens., 36, 56375663, doi:10.1080/01431161.2015.1103916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, T., 1991: Predicting Crop Phenology. CRC Press, 233 pp.

  • Jenkerson, C., T. Maiersperger, and G. Schmidt, 2010: eMODIS: A user-friendly data source. U.S. Department of the Interior, U.S. Geological Survey Open-File Rep. 2010–1055, 22 pp. [Available online at https://pubs.usgs.gov/of/2010/1055/pdf/OF2010-1055.pdf.]

    • Crossref
    • Export Citation
  • Ji, L., and A. J. Peters, 2004: Forecasting vegetation greenness with satellite and climate data. IEEE Geosci. Remote Sens. Lett., 1, 36, doi:10.1109/LGRS.2003.821264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, L., B. Wylie, B. Ramachandran, and C. Jenkerson, 2010: A comparative analysis of three different MODIS NDVI datasets for Alaska and adjacent Canada. Can. J. Remote Sens., 36, S149S167, doi:10.5589/m10-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolly, W. M., R. Nemani, and S. W. Running, 2005: A generalized, bioclimatic index to predict foliar phenology in response to climate. Global Change Biol., 11, 619632, doi:10.1111/j.1365-2486.2005.00930.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonsson, P., and L. Eklundh, 2002: Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens., 40, 18241832, doi:10.1109/TGRS.2002.802519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, S. E., 2009: Ecosystem Ecology. Elsevier, 521 pp.

  • Kogan, F. N., 1990: Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens., 11, 14051419, doi:10.1080/01431169008955102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambers, H., T. L. Pons, and F. S. Chapin, 2008: Plant Physiological Ecology. Springer, 604 pp.

  • Larcher, W., 2003: Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. Springer, 513 pp.

  • Leathwick, J. R., J. Elith, and T. Hastie, 2006: Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Modell., 199, 188196, doi:10.1016/j.ecolmodel.2006.05.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C., and N. Dugarsuren, 2015: Deriving the spatiotemporal NPP pattern in terrestrial ecosystems of Mongolia using MODIS imagery. Photogramm. Eng. Remote Sensing, 81, 587598, doi:10.14358/PERS.81.7.587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, A., 2003: Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climatic Change, 57, 243263, doi:10.1023/A:1022880418362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P., W. Lanier, and S. Brandt, 2001: Using growing degree days to predict plant stages. Montana State University Extensive Service Montguide MT200103 AG 7/2001, 8 pp. [Available online at http://store.msuextension.org/publications/agandnaturalresources/mt200103ag.pdf.]

  • Moulin, S., L. Kergoat, N. Viovy, and G. Dedieu, 1997: Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. J. Climate, 10, 11541170, doi:10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Díaz, D., and F. S. Rodrigo, 2006: Seasonal rainfall variations in Spain (1912–2000) and their links to atmospheric circulation. Atmos. Res., 81, 94110, doi:10.1016/j.atmosres.2005.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA Ames Ecological Forecasting Laboratory, 2009: Ecocast: Monitoring, modeling, and forecasting ecosystem change. NASA, accessed 11 May 2016. [Available online at http://ecocast.arc.nasa.gov/.]

  • Neyman, J., 1934: On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection. J. Roy. Stat. Soc., 97, 558606, doi:10.2307/2342192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NGA, 1996: Digital terrain elevation data level 0. National Geospatial-Intelligence Agency Doc. MIL-PRF-89020A, 41 pp. [Available online at http://earth-info.nga.mil/publications/specs/printed/89020A/89020A_DTED.pdf.]

  • Pau, S., E. M. Wolkovich, B. I. Cook, T. J. Davies, N. J. B. Kraft, K. Bolmgren, J. L. Betancourt, and E. E. Cleland, 2011: Predicting phenology by integrating ecology, evolution and climate science. Global Change Biol., 17, 36333643, doi:10.1111/j.1365-2486.2011.02515.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peñuelas, J., and Coauthors, 2004: Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol., 161, 837846, doi:10.1111/j.1469-8137.2004.01003.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfafflin, J. R., and E. N. Ziegler, 2006: Encyclopedia of Environmental Science and Engineering: Volumes One and Two. 5th ed. Taylor & Francis, 1440 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., A. Mohammat, J. Fang, Q. Cai, and J. Feng, 2006: NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environ. Change, 16, 340348, doi:10.1016/j.gloenvcha.2006.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickup, G., G. N. Bastin, and V. H. Chewings, 1994: Remote-sensing-based condition assessment for nonequilibrium rangelands under large-scale commercial grazing. Ecol. Appl., 4, 497517, doi:10.2307/1941952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Post, E. S., and D. W. Inouye, 2008: Phenology: Response, driver, and integrator. Ecology, 89, 319320, doi:10.1890/07-1022.1.

  • Prins, H. H. T., and P. E. Loth, 1988: Rainfall patterns as background to plant phenology in northern Tanzania. J. Biogeogr., 15, 451463, doi:10.2307/2845275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PRISM Climate Group, 2010: PRISM Climate Data. PRISM Climate Group, Oregon State University, accessed 3 April 2010. [Available online at http://www.prism.oregonstate.edu/.]

  • Pugnaire, F. I., and F. Valladares, 1999: Handbook of Functional Plant Ecology. M. Dekker, 901 pp.

  • R Core Team, 2015: R: A language and environment for statistical computing. R Foundation for Statistical Computing, accessed 23 January 2015. [Available online at https://www.R-project.org/.]

  • Reed, B. C., J. F. Brown, D. VanderZee, T. R. Loveland, J. W. Merchant, and D. O. Ohlen, 1994: Measuring phenological variability from satellite imagery. J. Veg. Sci., 5, 703714, doi:10.2307/3235884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuster, W. S., D. L. Alles, and J. B. Mitton, 1989: Gene flow in limber pine: Evidence from pollination phenology and genetic differentiation along an elevational transect. Amer. J. Bot., 76, 13951403, doi:10.2307/2444563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, M. D., 2003a: Introduction. Phenology: An Integrative Environmental Science, M. D. Schwartz, Ed., Tasks for Vegetation Science Series, Vol. 39, Springer, 3–7.

    • Crossref
    • Export Citation
  • Schwartz, M. D., 2003b: Phenoclimatic measures. Phenology: An Integrative Environmental Science, M. D. Schwartz, Ed., Tasks for Vegetation Science Series, Vol. 39, Springer, 331–343.

    • Crossref
    • Export Citation
  • Sharma, P. D., 2005: Ecology and Environment. Rastogi Publications, 640 pp.

  • Shen, M., and Coauthors, 2014: Earlier-season vegetation has greater temperature sensitivity of spring phenology in Northern Hemisphere. PLoS One, 9, e88178, doi:10.1371/journal.pone.0088178.

    • Search Google Scholar
    • Export Citation
  • Sparks, T. H., and P. D. Carey, 1995: The responses of species to climate over two centuries: An analysis of the Marsham phenological record, 1736-1947. J. Ecol., 83, 321329, doi:10.2307/2261570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sparks, T. H., P. D. Carey, and J. Combes, 1997: First leafing dates of trees in Surrey between 1947 and 1996. London Nat., 76, 1520.

    • Search Google Scholar
    • Export Citation
  • Sparks, T. H., E. P. Jeffree, and C. E. Jeffree, 2000: An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int. J. Biometeor., 44, 8287, doi:10.1007/s004840000049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, L. M., 2002: Plant Growth and Development: Hormones and Environment. Academic Press, 772 pp.

  • Stohlgren, T. J., P. Ma, S. Kumar, M. Rocca, J. T. Morisette, C. S. Jarnevich, and N. Benson, 2010: Ensemble habitat mapping of invasive plant species. Risk Anal., 30, 224235, doi:10.1111/j.1539-6924.2009.01343.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, R., S. Tanaka, and T. Yasunari, 2000: Relationships between meridional profiles of satellite-derived vegetation index (NDVI) and climate over Siberia. Int. J. Climatol., 20, 955967, doi:10.1002/1097-0088(200007)20:9<955::AID-JOC512>3.0.CO;2-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, H., Z. Li, Z. Zhu, B. Chen, B. Zhang, and X. Xin, 2015: Variability and climate change trend in vegetation phenology of recent decades in the Greater Khingan Mountain area, northeastern China. Remote Sens., 7, 11 91411 932, doi:10.3390/rs70911914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., M. M. Thornton, B. W. Mayer, N. Wilhelmi, Y. Wei, and R. B. Cook, 2012: Daymet: Daily surface weather on a 1-km grid for North America,1980 - 2011. Oak Ridge National Laboratory Distributed Active Archive Center, accessed 26 February 2013. [Available online at http://daymet.ornl.gov/.]

  • Timmermans, M., 2010: Plant Development. Academic Press, 480 pp.

  • USGS, 1997: STATSGO soil characteristics for the conterminous United States, accessed 15 March 2009. [Available online at https://water.usgs.gov/GIS/metadata/usgswrd/XML/muid.xml.]

  • USGS, 2010: National gap analysis program land cover data, accessed 8 October 2011. [Available online at https://gapanalysis.usgs.gov/gaplandcover/.]

  • Van Dyke, F., 2008: Conservation Biology: Foundations, Concepts, Applications. Springer, 477 pp.

  • Van Leeuwen, W. J., 2008: Monitoring the effects of forest restoration treatments on post-fire vegetation recovery with MODIS multitemporal data. Sensors, 8, 20172042, doi:10.3390/s8032017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villordon, A., C. Clark, D. Ferrin, and D. LaBonte, 2009: Using growing degree days, agrometeorological variables, linear regression, and data mining methods to help improve prediction of sweetpotato harvest date in Louisiana. HortTechnology, 19, 133144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, H., and J. Wieser, 1973: Vegetation of the Earth in Relation to Climate and the Eco-Physiological Conditions. English Universities Press, 237 pp.

    • Search Google Scholar
    • Export Citation
  • Waugh, D., 2000: Geography: An Integrated Approach. Nelson Thornes, 657 pp.

  • White, M. A., and R. R. Nemani, 2006: Real-time monitoring and short-term forecasting of land surface phenology. Remote Sens. Environ., 104, 4349, doi:10.1016/j.rse.2006.04.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, M. A., P. E. Thornton, and S. W. Running, 1997: A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem. Cycles, 11, 217234, doi:10.1029/97GB00330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, M. A., F. Hoffman, W. W. Hargrove, and R. R. Nemani, 2005: A global framework for monitoring phenological responses to climate change. Geophys. Res. Lett., 32, L04705, doi:10.1029/2004GL021961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whittaker, R. H., 1970: Communities and Ecosystems. Macmillan, 162 pp.

  • Wielgolaski, F. E., and D. W. Inouye, 2003: High latitude climates. Phenology: An Integrative Environmental Science, M. D. Schwartz, Ed., Tasks for Vegetation Science Series, Vol. 39, Springer, 175–194.

    • Crossref
    • Export Citation
  • Woodward, F. I., 1987: Climate and Plant Distribution. Cambridge University Press, 174 pp.

  • Xie, Y., A. Zhang, and W. Welsh, 2015: Mapping wetlands and phragmites using publically available remotely sensed images. Photogramm. Eng. Remote Sensing, 81, 6978, doi:10.14358/PERS.81.1.69.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., L. Yang, and J. Merchant, 1997: An assessment of AVHRR/NDVI-ecoclimatological relations in Nebraska, USA. Int. J. Remote Sens., 18, 21612180, doi:10.1080/014311697217819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., E. Luedeling, and J. Xu, 2010: Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA, 107, 22 15122 156, doi:10.1073/pnas.1012490107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. C. F. Hodges, C. B. Schaaf, M. A. Friedl, A. H. Strahler, and G. Feng, 2001: Global vegetation phenology from AVHRR and MODIS data. Proc. IEEE 2001 Int. Geoscience and Remote Sensing Symp. IGARSS ’01, Vol. 2265, Sydney, Australia, IEEE, 2262–2264, doi:10.1109/IGARSS.2001.977969.

    • Crossref
    • Export Citation
  • Zhang, X., M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. F. Hodges, F. Gao, B. C. Reed, and A. Huete, 2003: Monitoring vegetation phenology using MODIS. Remote Sens. Environ., 84, 471475, doi:10.1016/S0034-4257(02)00135-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., M. A. Friedl, and C. B. Schaaf, 2009: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. Int. J. Remote Sens., 30, 20612074, doi:10.1080/01431160802549237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., G. F. Hepner, and P. E. Dennison, 2012: Delineation of phenoregions in geographically diverse regions using k-means++ clustering: A case study in the upper Colorado River basin. GIsci. Remote Sens., 49, 163181.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 437 146 6
PDF Downloads 315 54 1