Characteristics of Ethiopia Air Chemistry and Its Meteorological Context

Mark R. Jury University of Zululand, KwaDlangezwa, South Africa, and Physics Department, University of Puerto Rico, Mayagüez, Puerto Rico

Search for other papers by Mark R. Jury in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The concentration of trace gases and aerosols in Ethiopia is poorly characterized due to a limited history of surface measurements. Here, satellite measurements and model estimates of atmospheric composition are employed to understand space–time distributions in the period 2000–16. Methane (CH4) and carbon monoxide (CO) display high concentrations over the highlands and provide a focus for analysis of monthly and daily data. CH4 emissions from livestock peak at the beginning of the dry season, while CO from biomass burning rises at the end of the dry season. The seasonal cycle of dust, aerosol optical depth (AOD), and CO2 is inversely related with CH4, while CO closely follows sensible heat flux, thus linking drying and rural biomass burning. Stable easterly flow in the dry season accumulates local emissions, so near-surface concentrations of CO and CH4 are high then. The weather pattern underlying an episode of high nitrogen dioxide (NO2) concentrations was studied. In addition to a stable lapse rate and dry anticyclonic weather, midtropospheric subsidence was related to intrusion of the northern subtropical jet stream on 24–26 December 2010. The wind shadow was cast by the Rift Escarpment limited dispersion, particularly with the dry, stable weather conditions. A key outcome of this work is that CH4 concentrations over Ethiopia are high in global context and have increased >0.1 ppm from 2002 to 2016; hence, there is a need to improve livestock management and production efficiency.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

a Corresponding author: Mark R. Jury, mark.jury@upr.edu

Abstract

The concentration of trace gases and aerosols in Ethiopia is poorly characterized due to a limited history of surface measurements. Here, satellite measurements and model estimates of atmospheric composition are employed to understand space–time distributions in the period 2000–16. Methane (CH4) and carbon monoxide (CO) display high concentrations over the highlands and provide a focus for analysis of monthly and daily data. CH4 emissions from livestock peak at the beginning of the dry season, while CO from biomass burning rises at the end of the dry season. The seasonal cycle of dust, aerosol optical depth (AOD), and CO2 is inversely related with CH4, while CO closely follows sensible heat flux, thus linking drying and rural biomass burning. Stable easterly flow in the dry season accumulates local emissions, so near-surface concentrations of CO and CH4 are high then. The weather pattern underlying an episode of high nitrogen dioxide (NO2) concentrations was studied. In addition to a stable lapse rate and dry anticyclonic weather, midtropospheric subsidence was related to intrusion of the northern subtropical jet stream on 24–26 December 2010. The wind shadow was cast by the Rift Escarpment limited dispersion, particularly with the dry, stable weather conditions. A key outcome of this work is that CH4 concentrations over Ethiopia are high in global context and have increased >0.1 ppm from 2002 to 2016; hence, there is a need to improve livestock management and production efficiency.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

a Corresponding author: Mark R. Jury, mark.jury@upr.edu
Save
  • Abate, Z., 2015: Impact of vehicle emission on air pollution in Addis Ababa. Stakeholder Workshop on Air Quality and Transportation Challenges in Ethiopia and Agenda for Clean Air Action Plan, Addis Ababa, Ethiopia, Ministry of Environment and Forest, The Federal Democratic Republic of Ethiopia and Centre for Science and Environment, 8 pp., www.cseindia.org/userfiles/ethiopia-report.pdf.

  • Andreae, M. O., and V. Ramanathan, 2013: Climate’s dark forcings. Science, 340, 280281, https://doi.org/10.1126/science.1235731.

  • Arino, O., S. Casadio, and D. Serpe, 2012: Global night-time fire season timing and fire count trends using the ATSR instrument series. Remote Sens. Environ., 116, 226238, https://doi.org/10.1016/j.rse.2011.05.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergamaschi, P., and Coauthors, 2007: Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. J. Geophys. Res., 112, D02304, https://doi.org/10.1029/2006JD007268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broucek, J., 2014: Production of methane emissions from ruminant husbandry: A review. J. Environ. Prot., 5, 51796, https://doi.org/10.4236/jep.2014.515141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buchard, V., and Coauthors, 2015: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis. Atmos. Chem. Phys., 15, 57435760, https://doi.org/10.5194/acp-15-5743-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bucsela, E. J., and Coauthors, 2013: A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications to OMI. Atmos. Meas. Tech., 6, 26072626, https://doi.org/10.5194/amt-6-2607-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, J. P., U. Platt, and P. Borrell, Eds., 2011: The Remote Sensing of Tropospheric Composition from Space. Springer-Verlag, 536 pp.

    • Crossref
    • Export Citation
  • CAIT, 2016: Country GHG emissions. World Resources Institute Agricultural Emission Database, CAIT Climate Data Explorer, https://cait.wri.org/profile/Ethiopia.

  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2015: TRMM LIS climatology of thunderstorm occurrence and conditional lightning flash rates. J. Climate, 28, 65366547, https://doi.org/10.1175/JCLI-D-15-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, https://doi.org/10.1029/2002JD002347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, O. R., and Coauthors, 2014: Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anthropocene, 2, 29, https://doi.org/10.12952/journal.elementa.000029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. A. Randles, V. Buchard, A. Darmenov, P. R. Colarco, and R. Govindaraju, 2015: The MERRA Aerosol Reanalysis. GMAO Tech. Rep. 7, 30 pp.

  • Dentener, F., D. Stevenson, J. Cofala, R. Mechler, M. Amann, P. Bergamaschi, F. Raes, and R. Derwent, 2005: The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030. Atmos. Chem. Phys., 5, 17311755, https://doi.org/10.5194/acp-5-1731-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desalegn, T., F. Cruz, M. Kindu, M. B. Turrión, and J. Gonzalo, 2014: Land-use/land-cover (LULC) change and socioeconomic conditions of local communities in the central highlands of Ethiopia. Int. J. Sustain. Dev. World Ecol., 21, 406413, https://doi.org/10.1080/13504509.2014.961181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fantaye, K. T., 2016: Description of cropping systems, climate, and soils in Ethiopia. Global Yield Gap Atlas, www.yieldgap.org/ethiopia.

  • FAOSTAT, 2016: Ethiopia. Food and Agriculture Organization of the United Nations, accessed December 2016, http://www.fao.org/faostat/en/#country/238.

  • Farahat, A., 2016: Air pollution in the Arabian Peninsula (Saudi Arabia, the United Arab Emirates, Kuwait, Qatar, Bahrain, and Oman): Causes, effects, and aerosol categorization. Arab. J. Geosci., 9, 196, https://doi.org/10.1007/s12517-015-2203-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAS, 2016: Eastern Africa. U.S. Foreign Agriculture Service, www.pecad.fas.usda.gov/cropexplorer/imageview.aspx?regionid=eafrica.

  • Frankenberg, C., and Coauthors, 2006: Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004. J. Geophys. Res., 111, D07303, https://doi.org/10.1029/2005JD006235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, L., J. Descloitres, C. O. Justice, and Y. J. Kaufman, 2003: An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ., 87, 273282, https://doi.org/10.1016/S0034-4257(03)00184-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 2000: The dry season climate of tropical southern Africa and implications for pyrogenic emissions. S. Afr. J. Sci., 96, 387390.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 2016: Large-scale features of Africa’s diurnal climate. Phys. Geogr., 37, 120131, https://doi.org/10.1080/02723646.2016.1163004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 2017: Statistics and meteorology of air pollution episodes over the South African Highveld based on satellite–model datasets. J. Appl. Meteor. Climatol., 56, 15831594, https://doi.org/10.1175/JAMC-D-16-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Justice, C. O., and Coauthors, 2002: The MODIS fire products. Remote Sens. Environ., 83, 244262, https://doi.org/10.1016/S0034-4257(02)00076-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and M. C. Todd, 2012: Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications for modeling. Rev. Geophys., 50, RG1007, https://doi.org/10.1029/2011RG000362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krotkov, N. A., S. Carn, A. Krueger, P. Bhartia, and K. Yang, 2006: Band residual difference algorithm for retrieval of SO2 from the Aura Ozone Monitoring Instrument (OMI). IEEE Trans. Geosci. Remote Sens., 44, 12591266, https://doi.org/10.1109/TGRS.2005.861932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krotkov, N. A., and Coauthors, 2016: Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys., 16, 46054629, https://doi.org/10.5194/acp-16-4605-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, https://doi.org/10.5194/acp-10-7017-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamsal, L. N., and Coauthors, 2014: Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations. Atmos. Chem. Phys., 14, 11 58711 609, https://doi.org/10.5194/acp-14-11587-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landrigan, P. J., and Coauthors, 2018: The Lancet Commission on pollution and health. Lancet, 391, 462512, https://doi.org/10.1016/S0140-6736(17)32345-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu, 2013: The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech., 6, 29893034, https://doi.org/10.5194/amt-6-2989-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddy, E. S., C. D. Barnet, M. Goldberg, C. Sweeney, and X. Liu, 2008: CO2 retrievals from the Atmospheric Infrared Sounder: Methodology and validation. J. Geophys. Res., 113, D11301, https://doi.org/10.1029/2007JD009402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marais, E. A., D. J. Jacob, A. Guenther, K. Chance, T. P. Kurosu, J. G. Murphy, C. E. Reeves, and H. O. Pye, 2014a: Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: Implications for oxidants and particulate matter. Atmos. Chem. Phys., 14, 76937703, https://doi.org/10.5194/acp-14-7693-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marais, E. A., and Coauthors, 2014b: Anthropogenic emissions in Nigeria and implications for atmospheric ozone pollution: A view from space. Atmos. Environ., 99, 3240, https://doi.org/10.1016/j.atmosenv.2014.09.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piketh, S. J., H. J. Annegarn, and P. D. Tyson, 1999: Lower tropospheric aerosol loadings over South Africa: The relative contribution of aeolian dust, industrial emissions, and biomass burning. J. Geophys. Res., 104, 15971607, https://doi.org/10.1029/1998JD100014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisner, J. M., and P. K. Smolarkiewicz, 1994: Thermally forced low Froude number flow past three-dimensional obstacles. J. Atmos. Sci., 51, 117133, https://doi.org/10.1175/1520-0469(1994)051<0117:TFLFNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2016: The GEOS-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. NASA/TM-2007-104606, https://gmao.gsfc.nasa.gov/pubs/docs/GEOS-5.0.1_Documentation_r3.pdf.

  • Robinson, T. P., and Coauthors, 2014: Mapping the global distribution of livestock. PLOS ONE, 9, e96084, https://doi.org/10.1371/journal.pone.0096084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tefera, W., A. Asfaw, F. Gilliland, A. Worku, M. Wondimagegn, A. Kumie, J. Samet, and K. Berhane, 2016: Indoor and outdoor air pollution-related health problems in Ethiopia: Review of related literature. Ethiop. J. Health Dev., 30, 112.

    • Search Google Scholar
    • Export Citation
  • Teferi, E., W. Bewket, S. Uhlenbrook, and J. Wenninger, 2013: Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia: Spatially explicit statistical modeling of systematic transitions. Agric. Ecosyst. Environ., 165, 98117, https://doi.org/10.1016/j.agee.2012.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thonat, T., C. Crevoisier, N. A. Scott, A. Chédin, T. Schuck, R. Armante, and L. Crépeau, 2012: Retrieval of tropospheric CO column from hyperspectral infrared sounders—Application to four years of Aqua/AIRS and MetOp-A/IASI. Atmos. Meas. Tech., 5, 24132429, https://doi.org/10.5194/amt-5-2413-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, O., P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. Holben, 2002: A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci., 59, 398413, https://doi.org/10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., J. E. Pinzon, M. E. Brown, D. A. Slayback, E. W. Pak, R. Mahoney, E. F. Vermote, and N. El Saleous, 2005: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 44854498, https://doi.org/10.1080/01431160500168686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UNDP, 2011: Ethiopia’s climate-resilient green economy: Green economy strategy. UNDP Tech. Rep., 200 pp., www.undp.org/content/dam/ethiopia/docs/Ethiopia%20CRGE.pdf.

  • USAID, 2013: Agricultural growth project—Livestock market development. USAID Rep. AID-663-C-12-00009, 160 pp., https://www.usaid.gov/sites/default/files/documents/1860/AGP-LMD%20Value%20Chain%20Analysis.pdf.

  • van der A, R. J., H. J. Eskes, K. F. Boersma, T. P. C. van Noije, M. Van Roozendael, I. De Smedt, D. H. M. U. Peters, and E. W. Meijer, 2008: Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space. J. Geophys. Res., 113, D04302, https://doi.org/10.1029/2007JD009021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Wesenbeeck, C. F. A., M. A. Keyzer, and M. Nubé, 2009: Estimation of undernutrition and mean calorie intake in Africa: Methodology, findings and implications. Int. J. Health Geogr., 8, 37, https://doi.org/10.1186/1476-072X-8-37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. X., Z. Wei, L. L. Strow, C. D. Barnet, L. C. Sparling, G. Diskin, and G. Sachse, 2010: Improved agreement of AIRS tropospheric carbon monoxide products with other EOS sensors using optimal estimation retrievals. Atmos. Chem. Phys., 10, 95219533, https://doi.org/10.5194/acp-10-9521-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WHO, 2016: WHO global urban ambient air pollution database. WHO, accessed December 2016, www.who.int/phe/health_topics/outdoorair/databases/cities/en/.

  • Winker, D. M., W. M. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wint, W., and T. Robinson, Eds., 2007: Gridded Livestock of the World (GLW). Food and Agriculture Organization Rep., 131 pp.

  • World Bank, 2016: Ethiopia statistical database. The World Bank, accessed December 2016, https://data.worldbank.org/country/Ethiopia.

  • Xiong, X., C. Barnet, E. Maddy, C. Sweeney, X. Liu, L. Zhou, and M. Goldberg, 2008: Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 113, G00A01, https://doi.org/10.1029/2007JG000500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yienger, J. J., and H. Levy, 1995: Empirical model of global soil-biogenic NOx emissions. J. Geophys. Res., 100, 11 44711 464, https://doi.org/10.1029/95JD00370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yurganov, L. N., W. W. McMillan, A. V. Dzhola, E. I. Grechko, N. B. Jones, and G. R. van der Werf, 2008: Global AIRS and MOPITT CO measurements: Validation, comparison, and links to biomass burning variations and carbon cycle. J. Geophys. Res., 113, D09301, https://doi.org/10.1029/2007JD009229.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 907 208 19
PDF Downloads 404 67 8