Simulated Sensitivity of Urban Green Infrastructure Practices to Climate Change

Saumya Sarkar Tetra Tech, Inc., Research Triangle Park, North Carolina

Search for other papers by Saumya Sarkar in
Current site
Google Scholar
PubMed
Close
,
Jonathan B. Butcher Tetra Tech, Inc., Research Triangle Park, North Carolina

Search for other papers by Jonathan B. Butcher in
Current site
Google Scholar
PubMed
Close
,
Thomas E. Johnson U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C.

Search for other papers by Thomas E. Johnson in
Current site
Google Scholar
PubMed
Close
, and
Christopher M. Clark U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C.

Search for other papers by Christopher M. Clark in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate change is likely to alter the quantity and quality of urban stormwater, presenting a risk to water quality and public health. How might stormwater management practices need to change to address future climate? Answering requires understanding how management practices respond to climate forcing. Traditional “gray” stormwater design employs engineered structures, sized based on assumptions about future rainfall, which have limited flexibility once built. Green infrastructure (GI) uses vegetation, soil, and distributed structures to manage rainwater where it falls and may provide greater flexibility for adaptation. There is, however, uncertainty about how a warmer climate may affect performance of different types of GI. This study uses the hydrologic and biogeochemical watershed model, Regional Hydro-Ecologic Simulation System (RHESSys), to investigate sensitivity of different GI practices to climate. Simulations examine 36 urban “archetypes” representing different development patterns (at the city block scale) of typical U.S. cities, 11 regional climatic settings, and a range of mid-twenty-first-century scenarios based on downscaled climate model output. Results suggest regionally variable effects of climate change on the performance of GI practices for water quantity, water quality, and carbon sequestration. GI is able to mitigate most projected future increases in surface runoff, while bioretention can mitigate increased nitrogen yield at nine of 11 sites. Simulated changes in carbon balance are small, while local evaporative cooling can be substantial. Given uncertainty in the local expression of future climate, infrastructure design should emphasize flexibility and robustness to a range of future conditions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/EI-D-17-0015.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

aCorresponding author: Saumya Sarkar, saumya.sarkar@tetratech.com

Abstract

Climate change is likely to alter the quantity and quality of urban stormwater, presenting a risk to water quality and public health. How might stormwater management practices need to change to address future climate? Answering requires understanding how management practices respond to climate forcing. Traditional “gray” stormwater design employs engineered structures, sized based on assumptions about future rainfall, which have limited flexibility once built. Green infrastructure (GI) uses vegetation, soil, and distributed structures to manage rainwater where it falls and may provide greater flexibility for adaptation. There is, however, uncertainty about how a warmer climate may affect performance of different types of GI. This study uses the hydrologic and biogeochemical watershed model, Regional Hydro-Ecologic Simulation System (RHESSys), to investigate sensitivity of different GI practices to climate. Simulations examine 36 urban “archetypes” representing different development patterns (at the city block scale) of typical U.S. cities, 11 regional climatic settings, and a range of mid-twenty-first-century scenarios based on downscaled climate model output. Results suggest regionally variable effects of climate change on the performance of GI practices for water quantity, water quality, and carbon sequestration. GI is able to mitigate most projected future increases in surface runoff, while bioretention can mitigate increased nitrogen yield at nine of 11 sites. Simulated changes in carbon balance are small, while local evaporative cooling can be substantial. Given uncertainty in the local expression of future climate, infrastructure design should emphasize flexibility and robustness to a range of future conditions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/EI-D-17-0015.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

aCorresponding author: Saumya Sarkar, saumya.sarkar@tetratech.com
Save
  • Arisz, H., and B. C. Burrell, 2006: Urban drainage infrastructure planning and design considering climate change. 2006 IEEE EIC Climate Change Conf., Ottawa, Ontario, Canada, IEEE, 1–9, https://doi.org/10.1109/EICCCC.2006.277251.

    • Crossref
    • Export Citation
  • Arnold, C. L., Jr., and C. J. Gibbons, 1996: Impervious surface coverage: The emergence of a key environmental indicator. J. Amer. Plann. Assoc., 62, 243258, https://doi.org/10.1080/01944369608975688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BES, 2011: Physical, chemical, and biological properties of forest and home lawn soils. Baltimore Ecosystem Study Rep. BES_0584/11, https://beslter.org/metacat_harvest_attribute_level_eml/html_metadata/bes_584.asp.

  • Bhaskar, A. S., and C. Welty, 2012: Water balances along an urban-to-rural gradient of metropolitan Baltimore, 2001–2009. Environ. Eng. Geosci., 18, 3750, https://doi.org/10.2113/gseegeosci.18.1.37.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, R. O., and Coauthors, 2012: A review of turfgrass fertilizer management practices: Implications for urban water quality. Hortic. Tech., 22, 280291.

    • Search Google Scholar
    • Export Citation
  • Del Grosso, S. J., A. R. Mosier, W. J. Parton, and D. S. Ojima, 2005: DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Tillage Res., 83, 924, https://doi.org/10.1016/j.still.2005.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Grosso, S. J., D. S. Ojima, W. J. Parton, E. Stehfest, M. Heistemann, B. DeAngelo, and S. Rose, 2009: Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils. Global Planet. Change, 67, 4450, https://doi.org/10.1016/j.gloplacha.2008.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dow, C. L., and D. R. DeWalle, 2000: Trends in evaporation and Bowen ratio on urbanizing watersheds in eastern United States. Water Resour. Res., 36, 18351843, https://doi.org/10.1029/2000WR900062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driscoll, C. T., and Coauthors, 2015: Green infrastructure: Lessons from science and practice. Science Policy Exchange Rep., 32 pp., https://s3.amazonaws.com/nyclimatescience.org/gi_report_surdna_6_29_15_final.pdf.

  • Easterling, W. E., N. J. Rosenberg, M. S. McKenney, C. A. Jones, P. T. Dyke, and J. R. Williams, 1992: Preparing the erosion productivity impact calculator (EPIC) model to simulate crop response to climate change and the direct effects of CO2. Agric. For. Meteor., 59, 1734, https://doi.org/10.1016/0168-1923(92)90084-H.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Filipovic, A., J. Rogan, A. Elmes, and D. Martin, 2016: Modeling hydrological ecosystem services of juvenile trees in Worcester, Massachusetts. The Association of American Geographers Annual Meeting, San Francisco, CA, AAG, Poster 52, http://www.itreetools.org/resources/reports/HydroWorcesterMA_afilipovic_AAGPoster.pdf.

  • Georgescu, M., P. E. Morefield, B. G. Bierwagen, and C. P. Weaver, 2014: Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA, 111, 29092914, https://doi.org/10.1073/pnas.1322280111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, S. E., J. F. Handley, A. R. Ennos, and S. Pauleit, 2007: Adapting cities for climate change: The role of the green infrastructure. Built Environ., 33, 115133, https://doi.org/10.2148/benv.33.1.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. H., M. D. Dukes, P. H. Jones, and G. L. Miller, 2006: Effect of urban soil compaction on infiltration rate. J. Soil Water Conserv., 61, 117124.

    • Search Google Scholar
    • Export Citation
  • Groffman, P. M., N. L. Law, K. T. Belt, L. E. Band, and G. T. Fisher, 2004: Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems, 7, 393403, https://doi.org/10.1007/s10021-003-0039-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groffman, P. M., and Coauthors, 2009: Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 93, 4977, https://doi.org/10.1007/s10533-008-9277-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and D. P. Lettenmaier, 2007: Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resour. Res., 43, W06427, https://doi.org/10.1029/2006WR005099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewlett, J. D., 1982: Principles of Forest Hydrology. University of Georgia Press, 183 pp.

  • IPCC, 2014: Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. C. B. Field et al., Eds., Cambridge University Press, 1–32, https://www.ipcc.ch/pdf/assessment-report/ar5/wg2/ar5_wgII_spm_en.pdf.

  • Jha, M., J. G. Arnold, P. W. Gassman, F. Giorgi, and R. R. Gu, 2006: Climate change sensitivity assessment on Upper Mississippi River Basin streamflows using SWAT. J. Amer. Water Resour. Assoc., 42, 9971015, https://doi.org/10.1111/j.1752-1688.2006.tb04510.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, T., and Coauthors, 2015: Modeling streamflow and water quality sensitivity to climate change and urban development in 20 U.S. watersheds. J. Amer. Water Resour. Assoc., 51, 13211341, https://doi.org/10.1111/1752-1688.12308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleerekoper, L., M. van Esch, and T. B. Salcedo, 2012: How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recycl., 64, 3038, https://doi.org/10.1016/j.resconrec.2011.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., J. Aber, F. Stange, K. Butterbach-Bahl, and H. Papen, 2000: A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. J. Geophys. Res., 105, 43694384, https://doi.org/10.1029/1999JD900949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., Y. Wei, W. M. Post, R. B. Cook, K. Schaefer, and M. M. Thornton, 2014: NACP MsTMIP: Unified North American soil map. Oak Ridge National Laboratory Distributed Active Archive Center, accessed 3 February 2016, https://doi.org/10.3334/ORNLDAAC/1242.

    • Crossref
    • Export Citation
  • Mearns, L. O., W. J. Gutowski, R. Jones, R. Leung, S. McGinnis, A. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311, https://doi.org/10.1029/2009EO360002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2013: Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP). Climatic Change, 120, 965975, https://doi.org/10.1007/s10584-013-0831-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medlyn, B. E., and Coauthors, 2001: Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis. New Phytol., 149, 247264, https://doi.org/10.1046/j.1469-8137.2001.00028.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, B. C., 2014: Small-scale residential stormwater management in urbanized watersheds: A geoinformatics-driven ecohydrology modeling approach. Ph.D. dissertation, Dept. of Geography, University of North Carolina at Chapel Hill, 216 pp.

  • Miles, B. C., and L. E. Band, 2015: Green infrastructure stormwater management at the watershed scale: Urban variable source area and watershed capacitance. Hydrol. Processes, 29, 22682274, https://doi.org/10.1002/hyp.10448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milesi, A., S. W. Running, C. D. Elvidge, J. B. Dietz, B. J. Tuttle, and R. R. Nemani, 2005: Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ. Manage., 36, 426438, https://doi.org/10.1007/s00267-004-0316-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and R. A. White, 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact., 2, 126, https://doi.org/10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittman, T., L. E. Band, T. Hwang, and M. L. Smith, 2012: Distributed hydrologic modeling in the suburban landscape: Assessing parameter transferability from gauged reference catchments. J. Amer. Water Resour. Assoc., 48, 546557, https://doi.org/10.1111/j.1752-1688.2011.00636.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and the environment. Symp. Soc. Explor. Biol., 19, 205234.

  • Nakicenovic, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp., http://www.grida.no/climate/ipcc/emission/.

  • NRCS, 2005: Bioswales. Natural Resources Conservation Service Rep., 2 pp., https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs144p2_029251.pdf.

  • Pataki, D. E., and Coauthors, 2011: Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ., 9, 2736, https://doi.org/10.1890/090220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., 2013: Mesoscale Meteorological Modeling. 3rd ed. Academic Press, 760 pp.

    • Crossref
    • Export Citation
  • Pitt, R., S. E. Chen, and S. Clark, 2002: Compacted urban soils effects on infiltration and bioretention stormwater control designs. Ninth Int. Conf. on Urban Drainage, Portland, Oregon, ASCE, 21 pp., https://doi.org/10.1061/40644(2002)14.

    • Crossref
    • Export Citation
  • Pouyat, R. V., I. D. Yesilonis, and D. J. Nowak, 2006: Carbon storage in urban soils in the United States. J. Environ. Qual., 35, 15661575, https://doi.org/10.2134/jeq2005.0215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwede, D. B., and G. G. Lear, 2014: A novel hybrid approach for estimating total deposition in the United States. Atmos. Environ., 92, 207220, https://doi.org/10.1016/j.atmosenv.2014.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C., and C. Tague, 2015: Ecohydrology in semiarid urban ecosystems: Modeling the relationship between connected impervious area and ecosystem productivity. Water Resour. Res., 51, 302319, https://doi.org/10.1002/2014WR016108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sickman, J. O., M. J. Zanoli, and H. L. Mann, 2007: Effects of urbanization on organic carbon loads in the Sacramento River, California. Water Resour. Res., 43, W11422, https://doi.org/10.1029/2007WR005954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. M., and S. S. Kaushal, 2015: Carbon cycle of an urban watershed: Exports, sources, and metabolism. Biogeochemistry, 126, 173195, https://doi.org/10.1007/s10533-015-0151-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tague, C. L., and L. E. Band, 2004: RHESSys: Regional Hydro-Ecologic Simulation System—An object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interact., 8, 1–42, https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2.

    • Crossref
    • Export Citation
  • Taha, H., 1997: Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build., 25, 99103, https://doi.org/10.1016/S0378-7788(96)00999-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Census Bureau, 2010: 2010 Census urban area facts. United States Census Bureau, http://www.census.gov/geo/reference/ua/uafacts.html.

  • USDA, 1986: Urban hydrology for small watersheds. USDA Tech. Release 55, 164 pp., https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf.

  • U.S. EPA, 2007: Reducing stormwater costs through low impact development (LID) strategies and practices. U.S. EPA Rep. EPA 841-F-07-006, 37 pp.

  • U.S. EPA, 2013: Watershed modeling to assess the sensitivity of streamflow, nutrient, and sediment loads to potential climate change and urban development in 20 U.S. watersheds. U.S. EPA Rep. EPA/600/R-12/058F, 196 pp.

  • VWRRC, 2011: Bioretention version 1.9. Virginia DEQ Stormwater Design Specification 9, http://www.vwrrc.vt.edu/swc/NonPBMPSpecsMarch11/VASWMBMPSpec9BIORETENTION.html.

  • Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman, and R. P. Morgan II, 2005: The urban stream syndrome: Current knowledge and the search for a cure. J. N. Amer. Benthol. Soc., 24, 706723, https://doi.org/10.1899/04-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., T. A. Endreny, and D. J. Nowak, 2008: Mechanistic simulation of tree effects in an urban water balance model. J. Amer. Water Resour. Assoc., 44, 7585, https://doi.org/10.1111/j.1752-1688.2007.00139.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigmosta, M., L. Vail, and D. Lettenmaier, 1994: A distributed hydrology-vegetation model for complex terrain. Water Resour. Res., 30, 16651679, https://doi.org/10.1029/94WR00436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., 2013: Studying soil moisture and land-to-water carbon export in urbanized coastal areas using remotely sensed data and a regional hydro-ecological model. Ph.D. dissertation, University of Massachusetts, Boston, 180 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3943 2220 127
PDF Downloads 1678 196 24