A 22-Year Climatology of Cool Season Hourly Precipitation Thresholds Conducive to Shallow Landslides in California

N. S. Oakley Desert Research Institute, Reno, Nevada
Western Regional Climate Center, Reno, Nevada
Center for Western Weather and Water Extremes (CW3E), Scripps Institution of Oceanography, La Jolla, California

Search for other papers by N. S. Oakley in
Current site
Google Scholar
PubMed
Close
,
J. T. Lancaster California Geological Survey, Sacramento, California

Search for other papers by J. T. Lancaster in
Current site
Google Scholar
PubMed
Close
,
B. J. Hatchett Desert Research Institute, Reno, Nevada
Western Regional Climate Center, Reno, Nevada

Search for other papers by B. J. Hatchett in
Current site
Google Scholar
PubMed
Close
,
J. Stock U.S. Geological Survey, Menlo Park, California

Search for other papers by J. Stock in
Current site
Google Scholar
PubMed
Close
,
F. M. Ralph Center for Western Weather and Water Extremes (CW3E), Scripps Institution of Oceanography, La Jolla, California

Search for other papers by F. M. Ralph in
Current site
Google Scholar
PubMed
Close
,
S. Roj Desert Research Institute, Reno, Nevada
Western Regional Climate Center, Reno, Nevada

Search for other papers by S. Roj in
Current site
Google Scholar
PubMed
Close
, and
S. Lukashov California Geological Survey, Sacramento, California

Search for other papers by S. Lukashov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

California’s winter storms produce intense rainfall capable of triggering shallow landslides, threatening lives and infrastructure. This study explores where hourly rainfall in the state meets or exceeds published values thought to trigger landslides after crossing a seasonal antecedent precipitation threshold. We answer the following questions: 1) Where in California are overthreshold events most common? 2) How are events distributed within the cool season (October–May) and interannually? 3) Are these events related to atmospheric rivers? To do this, we compile and quality control hourly precipitation data over a 22-yr period for 147 Remote Automated Weather Stations (RAWS). Stations in the Transverse and Coast Ranges and portions of the northwestern Sierra Nevada have the greatest number of rainfall events exceeding thresholds. Atmospheric rivers coincide with 60%–90% of these events. Overthreshold events tend to occur in the climatological wettest month of the year, and they commonly occur multiple times within a storm. These statewide maps depict where to expect intense rainfalls that have historically triggered shallow landslides. They predict that some areas of California are less susceptible to storm-driven landslides solely because high-intensity rainfall is unlikely.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

f Corresponding author: Nina S. Oakley, nina.oakley@dri.edu

Abstract

California’s winter storms produce intense rainfall capable of triggering shallow landslides, threatening lives and infrastructure. This study explores where hourly rainfall in the state meets or exceeds published values thought to trigger landslides after crossing a seasonal antecedent precipitation threshold. We answer the following questions: 1) Where in California are overthreshold events most common? 2) How are events distributed within the cool season (October–May) and interannually? 3) Are these events related to atmospheric rivers? To do this, we compile and quality control hourly precipitation data over a 22-yr period for 147 Remote Automated Weather Stations (RAWS). Stations in the Transverse and Coast Ranges and portions of the northwestern Sierra Nevada have the greatest number of rainfall events exceeding thresholds. Atmospheric rivers coincide with 60%–90% of these events. Overthreshold events tend to occur in the climatological wettest month of the year, and they commonly occur multiple times within a storm. These statewide maps depict where to expect intense rainfalls that have historically triggered shallow landslides. They predict that some areas of California are less susceptible to storm-driven landslides solely because high-intensity rainfall is unlikely.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

f Corresponding author: Nina S. Oakley, nina.oakley@dri.edu
Save
  • Abatzoglou, J. T., 2013: Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol., 33, 121131, https://doi.org/10.1002/joc.3413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., 2016: Contribution of cutoff lows to precipitation across the United States. J. Appl. Meteor. Climatol., 55, 893899, https://doi.org/10.1175/JAMC-D-15-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, R. L., and J. W. Godt, 2010: Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides, 7, 259272, https://doi.org/10.1007/s10346-009-0177-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, R. L., J. W. Godt, and W. Z. Savage, 2010: Estimating the timing and location of shallow rainfall‐induced landslides using a model for transient, unsaturated infiltration. J. Geophys. Res., 115, F03013, https://doi.org/10.1029/2009JF001321.

    • Search Google Scholar
    • Export Citation
  • Bedrossian, T. L., 1996: 1995 storm events: An overview of the Department of Conservation, Division of Mines and Geology’s emergency landslide response. Calif. Geol., 49 (5), 111119.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., R. Seager, and D. B. Kirschbaum, 2016: Landslides in West Coast metropolitan areas: The role of extreme weather events. Wea. Climate Extremes, 14, 6779, https://doi.org/10.1016/j.wace.2016.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogaard, T., and R. Greco, 2018: Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: Proposing hydro-meteorological thresholds. Nat. Hazards Earth Syst. Sci., 18, 3139, https://doi.org/10.5194/nhess-18-31-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brabb, E. E., J. P. Colgan, and T. C. Best, 1999: Map showing inventory and regional susceptibility for Holocene debris flows, and related fast-moving landslides in the conterminous United States. U. S. Geological Survey Miscellaneous Field Studies Map MF- 2329, https://pubs.er.usgs.gov/publication/mf2329.

  • Brooks, H. E., and D. J. Stensrud, 2000: Climatology of heavy rain events in the United States from hourly precipitation observations. Mon. Wea. Rev., 128, 11941201, https://doi.org/10.1175/1520-0493(2000)128<1194:COHREI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, T. J., J. D. Horel, G. D. McCurdy, and M. G. Fearon, 2011: What is the appropriate RAWS network? Center for Climate, Ecosystem, and Fire Applications Rep. 11-01, 97 pp., https://cefa.dri.edu/Publications/RAWS%20Network%20Analysis%20final%20report.pdf.

  • Caine, N., 1980: The rainfall intensity: Duration control of shallow landslides and debris flows. Geogr. Ann., 62A, 23–27, https://doi.org/10.2307/520449.

    • Search Google Scholar
    • Export Citation
  • Campbell, R. H., 1975: Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California. U.S. Geological Survey Rep. 851, 51 pp., https://pubs.usgs.gov/pp/0851/report.pdf.

    • Search Google Scholar
    • Export Citation
  • Cannon, S. H., and S. D. Ellen, 1985: Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California. Calif. Geol., 38 (12), 267272.

    • Search Google Scholar
    • Export Citation
  • Cannon, S. H., and S. D. Ellen, 1988: Rainfall that resulted in abundant debris flow activity during the storm. Landslides, floods, and marine effects of the storm of January 3–5, 1982, in the San Francisco Bay region, California, S. D. Ellen and G. F. Wieczorek, Eds., U.S. Geological Survey Professional Paper 1434, 27–33.

  • Casadei, M., W. E. Dietrich, and N. L. Miller, 2003: Testing a model for predicting the timing and location of shallow landslide initiation in soil‐mantled landscapes. Earth Surf. Processes Landforms, 28, 925950, https://doi.org/10.1002/esp.470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CGS, 2002: California geomorphic provinces. California Geological Survey Note 36, 4 pp., http://www.conservation.ca.gov/cgs/Documents/Note_36.pdf.

  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and central Plains. Sci. Adv., 1, e1400082, https://doi.org/10.1126/sciadv.1400082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, A. Martin, N. Gaggini, J. R. Spackman, P. J. Neiman, J. J. Rutz, and R. Pierce, 2017: Forecasting atmospheric rivers during CalWater 2015. Bull. Amer. Meteor. Soc., 98, 449459, https://doi.org/10.1175/BAMS-D-15-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2016: Historical and future relations between large storms and droughts in California. San Francisco Estuary Watershed Sci., 14 (2), 1–21, https://doi.org/10.15447/sfews.2016v14iss2art2.

    • Crossref
    • Export Citation
  • Duchon, C. E., and G. R. Essenberg, 2001: Comparative rainfall observations from pit and aboveground rain gauges with and without wind shields. Water Resour. Res., 37, 32533263, https://doi.org/10.1029/2001WR000541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., and C. J. Biddle, 2010: Undercatch of tipping-bucket gauges in high rain rate events. Adv. Geosci., 25, 1115, https://doi.org/10.5194/adgeo-25-11-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godt, J. W., R. L. Baum, and A. F. Chleborad, 2006: Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surf. Processes Landforms, 31, 97110, https://doi.org/10.1002/esp.1237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guzzetti, F., S. Peruccacci, M. Rossi, and C. P. Stark, 2007: Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteor. Atmos. Phys., 98, 239267, https://doi.org/10.1007/s00703-007-0262-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guzzetti, F., S. Peruccacci, M. Rossi, and C. P. Stark, 2008: The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides, 5, 317, https://doi.org/10.1007/s10346-007-0112-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansch, S., L. Locklin, C. Willis, and L. Ewing, 1998: Coastal impacts of the 1997–98 El Niño and predictions for La Niña. California Coastal Commission Rep. Tu-11, 14 pp., https://documents.coastal.ca.gov/reports/1998/9/T11-9-1998.pdf.

  • Hatchett, B. J., B. Daudert, C. B. Garner, N. S. Oakley, A. E. Putnam, and A. B. White, 2017: Winter snow level rise in the northern Sierra Nevada from 2008 to 2017. Water, 9, 899, https://doi.org/10.3390/w9110899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hecht, C. W., and J. M. Cordeira, 2017: Characterizing the influence of atmospheric river orientation and intensity on precipitation distributions over north coastal California. Geophys. Res. Lett., 44, 90489058, https://doi.org/10.1002/2017GL074179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, M., A. Hall, and R. G. Fovell, 2009: Blocking in areas of complex topography, and its influence on rainfall distribution. J. Atmos. Sci., 66, 508518, https://doi.org/10.1175/2008JAS2689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irvine, P. J., 1996: Debris flows resulting from January 1995 rainstorms. Calif. Geol., 49 (5), 129134.

  • Iverson, R. M., 2000: Landslide triggering by rain infiltration. Water Resour. Res., 36, 18971910, https://doi.org/10.1029/2000WR900090.

  • Jakob, M., and O. Hungr, 2005: Debris-Flow Hazards and Related Phenomena. Springer, 739 pp.

  • Jennings, A. H., 1963: Maximum recorded United States point rainfall for 5 minutes to 24 hours at 296 first-order stations. U.S. Department of Commerce Tech. Paper 2., 60 pp., http://www.nws.noaa.gov/oh/hdsc/Technical_papers/TP2.pdf.

  • Johnson, K. A., and N. Sitar, 1990: Hydrologic conditions leading to debris-flow initiation. Can. Geotech. J., 27, 789801, https://doi.org/10.1139/t90-092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., B. Nelson, and D. J. Seo, 2009: Characteristics of reprocessed Hydrometeorological Automated Data System (HADS) hourly precipitation data. Wea. Forecasting, 24, 12871296, https://doi.org/10.1175/2009WAF2222227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kondragunta, C. R., and K. Shrestha, 2006: Automated real-time operational rain gauge quality control tools in NWS hydrologic operations. 20th Conf. on Hydrology, Atlanta, GA, Amer. Meteor. Soc., P2.4, https://ams.confex.com/ams/Annual2006/techprogram/paper_102834.htm.

  • Lamjiri, M. A., M. D. Dettinger, F. M. Ralph, and B. Guan, 2017: Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett., 44, 70207028, https://doi.org/10.1002/2017GL074193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, M. C., and A. Simon, 1993: A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr. Ann., 75A, 1323, https://doi.org/10.1080/04353676.1993.11880379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., D. E. Waliser, F. M. Ralph, and M. D. Dettinger, 2016: Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophys. Res. Lett., 43, 22752282, https://doi.org/10.1002/2016GL067765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., S. Chiao, T. A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633660, https://doi.org/10.1175/1520-0434(2001)016<0633:SCIFHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211, https://doi.org/10.1175/2007JHM853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., J. R. Minder, P. J. Neiman, and E. Sukovich, 2010: Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the northern Sierra Nevada. J. Hydrometeor., 11, 11411156, https://doi.org/10.1175/2010JHM1264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Modrick, T. M., and K. P. Georgakakos, 2015: The character and causes of flash flood occurrence changes in mountainous small basins of Southern California under projected climatic change. J. Hydrol.: Reg. Stud., 3, 312336, https://doi.org/10.1016/j.ejrh.2015.02.003.

    • Search Google Scholar
    • Export Citation
  • Morton, D. M., R. M. Alvarez, and R. H. Campbell, 2003: Preliminary soil-slip susceptibility maps, southwestern California. U.S. Geological Survey Open-File Rep. 03-17, 14 pp., https://pubs.usgs.gov/of/2003/0017/.

    • Crossref
    • Export Citation
  • Myrick, D. T., and J. D. Horel, 2008: Sensitivity of surface analyses over the western United States to RAWS observations. Wea. Forecasting, 23, 145158, https://doi.org/10.1175/2007WAF2006074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, P. O. G. Persson, A. B. White, D. P. Jorgensen, and D. E. Kingsmill, 2004: Modification of fronts and precipitation by coastal blocking during an intense landfalling winter storm in Southern California: Observations during CALJET. Mon. Wea. Rev., 132, 242273, https://doi.org/10.1175/1520-0493(2004)132<0242:MOFAPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NRC, 2004: Partnerships for Reducing Landslide Risk: Assessment of the National Landslide Hazards Mitigation Strategy. National Academies Press, 143 pp.

  • Oakley, N. S., J. T. Lancaster, M. L. Kaplan, and F. M. Ralph, 2017: Synoptic conditions associated with cool season post-fire debris flows in the Transverse Ranges of Southern California. Nat. Hazards, 88, 327354, https://doi.org/10.1007/s11069-017-2867-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palecki, M. A., J. R. Angel, and S. E. Hollinger, 2005: Storm precipitation in the United States. Part I: Meteorological characteristics. J. Appl. Meteor., 44, 933946, https://doi.org/10.1175/JAM2243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perica, S., and Coauthors, 2014: Precipitation-Frequency Atlas of the United States. NOAA Atlas 14, Vol. 6, version 2.3: California, 233 pp., http://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume6.pdf.

  • Polade, S. D., D. W. Pierce, D. R. Cayan, A. Gershunov, and M. D. Dettinger, 2014: The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep., 4, 4364, https://doi.org/10.1038/srep04364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, https://doi.org/10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, D. E. Kingsmill, P. O. Persson, A. B. White, E. T. Strem, E. D. Andrews, and R. C. Antweiler, 2003: The impact of a prominent rain shadow on flooding in California’s Santa Cruz Mountains: A CALJET case study and sensitivity to the ENSO cycle. J. Hydrometeor., 4, 12431264, https://doi.org/10.1175/1525-7541(2003)004<1243:TIOAPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, https://doi.org/10.1175/MWR2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, M. E., 1997: Slope instability caused by small variations in hydraulic conductivity. J. Geotech. Geoenviron. Eng., 123, 717725, https://doi.org/10.1061/(ASCE)1090-0241(1997)123:8(717).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and F. J. Wentz, 2016: Remote Sensing Systems ASCAT C-2015 daily ocean vector winds on 0.25 deg grid, version 02.1. Remote Sensing Systems, accessed 15 July 2017, www.remss.com/missions/ascat.

  • Russo, T. A., A. T. Fisher, and D. M. Winslow, 2013: Regional and local increases in storm intensity in the San Francisco Bay area, USA, between 1890 and 2010. J. Geophys. Res. Atmos., 118, 33923401, https://doi.org/10.1002/jgrd.50225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2015: The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis. Mon. Wea. Rev., 143, 19241944, https://doi.org/10.1175/MWR-D-14-00288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santi, P. M., K. Hewitt, D. F. VanDine, and E. Barillas Cruz, 2011: Debris-flow impact, vulnerability, and response. Nat. Hazards, 56, 371402, https://doi.org/10.1007/s11069-010-9576-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stock, J. D., and D. Bellugi, 2011: An empirical method to forecast the effect of storm intensity on shallow landslide abundance. Fifth Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Padua, Italy, Casa Editrice Universita La Sapienza, 1013–1022, https://doi.org/10.4408/IJEGE.2011-03.B-110.

    • Crossref
    • Export Citation
  • Vose, R. S., and Coauthors, 2014: Improved historical temperature and precipitation time series for U.S. climate divisions. J. Appl. Meteor. Climatol., 53, 12321251, https://doi.org/10.1175/JAMC-D-13-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., P. J. Neiman, J. M. Creamean, T. Coleman, F. M. Ralph, and K. A. Prather, 2015: The impacts of California’s San Francisco Bay Area gap on precipitation observed in the Sierra Nevada during HMT and CalWater. J. Hydrometeor., 16, 10481069, https://doi.org/10.1175/JHM-D-14-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieczorek, G. F., 1987: Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. Rev. Eng. Geol., 7, 93104, https://doi.org/10.1130/REG7-p93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieczorek, G. F., 2002: Catastrophic rockfalls and rockslides in the Sierra Nevada, USA. Rev. Eng. Geol., 15, 165190, https://doi.org/10.1130/REG15-p165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieczorek, G. F., and J. Sarmiento, 1988: Rainfall, piezometric levels, and debris flows near La Honda, California, in storms between 1975 and 1983. Landslides, floods, and marine effects of the storm of January 3-5, 1982, in the San Francisco Bay region, California, S. D. Ellen and G. F. Wieczorek, Eds., U.S. Geological Survey Professional Paper 1434, 27–33.

    • Crossref
    • Export Citation
  • Wills, C. J., F. G. Perez, and C. I. Gutierrez, 2011: Susceptibility to deep-seated landslides in California. California Geological Survey Map Sheet 58, 1 pp., http://www.conservation.ca.gov/cgs/information/publications/ms/Documents/MS58.pdf.

  • Wills, C. J., N. E. Roth, T. P. McCrink, and W. R. Short, 2017: The California landslide inventory database. Proc. Third North American Symp. on Landslides, Association of Environmental and Engineering Geologists, Roanoke, VA, 666674.

    • Crossref
    • Export Citation
  • Wilson, R. C., 1997a: Operation of a landslide warning system during the California storm sequence of January and February 1993. Rev. Eng. Geol., 11, 6170, https://doi.org/10.1130/REG11-p61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R. C., 1997b: Broad-scale climatic influences on rainfall thresholds for debris flows: Adapting thresholds for Northern California to Southern California. Rev. Eng. Geol., 11, 7180, https://doi.org/10.1130/REG11-p71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R. C., and G. F. Wieczorek, 1995: Rainfall thresholds for the initiation of debris flows at La Honda, California. Environ. Eng. Geosci., 1, 1127, https://doi.org/10.2113/gseegeosci.I.1.11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R. C., and A. S. Jayko, 1997: Preliminary maps showing rainfall thresholds for debris-flow activity, San Francisco Bay Region, California. U.S. Department of the Interior, U.S. Geological Survey Open-File Rep. 97-745-F, 20 pp., https://pubs.usgs.gov/of/1997/of97-745/sfbr-rt-dbdesc.pdf.

    • Crossref
    • Export Citation
  • WRCC, 2017: Cooperative climatological data summaries. Western Regional Climate Center, accessed 6 March 2017, https://wrcc.dri.edu/Climate/west_coop_summaries.php.

  • Young, A. M., K. T. Skelly, and J. M. Cordeira, 2017: High‐impact hydrologic events and atmospheric rivers in California: An investigation using the NCEI Storm Events Database. Geophys. Res. Lett., 44, 33933401, https://doi.org/10.1002/2017GL073077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zachariassen, J., K. F. Zeller, N. Nikolov, and T. McClelland, 2003: A review of the Forest Service Remote Automated Weather Station (RAWS) network. USDA Tech. Rep. RMRS-GTR-119, 153 pp., https://www.fs.fed.us/rm/pubs/rmrs_gtr119.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1277 257 17
PDF Downloads 734 168 8