Average Protein Content and Its Variability in Winter Wheat: A Forecast Model based on Weather Parameters

Dr. Elisabeth Vollmer Faculty of Agricultural Sciences, Farm Management Group, Department of Agricultural Economics and Rural Development, Georg-August-University Göttingen, Göttingen, Germany

Search for other papers by Dr. Elisabeth Vollmer in
Current site
Google Scholar
PubMed
Close
and
Prof. Oliver Mußhoff Faculty of Agricultural Sciences, Farm Management Group, Department of Agricultural Economics and Rural Development, Georg-August-University Göttingen, Göttingen, Germany

Search for other papers by Prof. Oliver Mußhoff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this article, the effect of different weather parameters on the mean height and the variability of the protein content in winter wheat is investigated. The analysis is based on the proteins of 148 800 wheat deliveries in Mecklenburg-Western Pomerania during 2004–15. From April to July, the forecast model was estimated with the following weather parameters: temperature sum, daily temperature range, precipitation, and sunshine duration. A Just and Pope function was estimated as a random intercept model. In addition to the weather parameters, a dummy variable is integrated into the forecast model to record differences in quality between A and B wheat varieties. The results show that 76.5% of the annual variability of the mean protein content can be explained on the basis of these weather parameters. In contrast, weather variables can only explain a small part of the variance in protein content per se.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

a Corresponding authors: Dr. Elisabeth Vollmer, elisabeth.vollmer@agr.uni-goettingen.de; Prof. Oliver Mußhoff, oliver.musshoff@agr.uni-goettingen.de

Abstract

In this article, the effect of different weather parameters on the mean height and the variability of the protein content in winter wheat is investigated. The analysis is based on the proteins of 148 800 wheat deliveries in Mecklenburg-Western Pomerania during 2004–15. From April to July, the forecast model was estimated with the following weather parameters: temperature sum, daily temperature range, precipitation, and sunshine duration. A Just and Pope function was estimated as a random intercept model. In addition to the weather parameters, a dummy variable is integrated into the forecast model to record differences in quality between A and B wheat varieties. The results show that 76.5% of the annual variability of the mean protein content can be explained on the basis of these weather parameters. In contrast, weather variables can only explain a small part of the variance in protein content per se.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

a Corresponding authors: Dr. Elisabeth Vollmer, elisabeth.vollmer@agr.uni-goettingen.de; Prof. Oliver Mußhoff, oliver.musshoff@agr.uni-goettingen.de
Save
  • Alaru, M., Ü. Laur, and E. Jaama, 2003: Influence of nitrogen and weather conditions on the grain quality of winter triticale. Agron. Res., 1, 310.

    • Search Google Scholar
    • Export Citation
  • Asche, F., and R. Tveterås, 1999: Modeling production risk with a two-step procedure. J. Agric. Resour. Econ., 24, 424439.

  • Bates, D., M. Mächler, B. Bolker, and S. Walker, 2015: Fitting linear mixed-effects models using lme4. J. Stat. Software, 67, 148, https://doi.org/10.18637/jss.v067.i01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benzian, B., and P. W. Lane, 1986: Protein concentration of grain in relation to some weather and soil factors during 17 years of English winter-wheat experiments. J. Sci. Food Agric., 37, 435444, https://doi.org/10.1002/jsfa.2740370502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabas, J., A. Weersink, and E. Olale, 2010: Crop yield response to economic, site and climatic variables. Climatic Change, 101, 599616, https://doi.org/10.1007/s10584-009-9754-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, C. A., and H. R. Davidson, 1979: Effect of temperature, nitrogen fertilization and moisture stress on yield, yield components, protein content and moisture use efficiency of Manitou spring wheat. Can. J. Plant Sci., 59, 963974, https://doi.org/10.4141/cjps79-153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, C. A., H. R. Davidson, and G. E. Winkleman, 1981: Effect of nitrogen, temperature, growth stage and duration of moisture stress on yield components and protein content of Manitou spring wheat. Can. J. Plant Sci., 61, 549563, https://doi.org/10.4141/cjps81-078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carew, R., E. G. Smith, and C. Grant, 2009: Factors influencing wheat yield and variability: Evidence from Manitoba, Canada. J. Agric. Appl. Econ., 41, 625639, https://doi.org/10.1017/S1074070800003114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-C., B. A. McCarl, and D. E. Schimmelpfennig, 2004: Yield variability as influenced by climate: A statistical investigation. Climatic Change, 66, 239261, https://doi.org/10.1023/B:CLIM.0000043159.33816.e5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chinnusamy, V., and R. Khanna-Chopra, 2003: Effect of heat stress on grain starch content in diploid, tetraploid and hexaploid wheat species. J. Agron. Crop Sci., 189, 242249, https://doi.org/10.1046/j.1439-037X.2003.00036.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chmielewski, F.-M., and W. Köhn, 2000: Impact of weather on yield components of winter rye over 30 years. Agric. For. Meteor., 102, 253261, https://doi.org/10.1016/S0168-1923(00)00125-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Climate Data, 2016: Klima: Mecklenburg-Vorpommern (Climate Mecklenburg-Western Pomerania). Climate-Data.org, accessed 15 October 2017, http://de.climate-data.org/region/423.

  • Dalla Marta, A., D. Grifoni, M. Mancini, G. Zipoli, and S. Orlandini, 2011: The influence of climate on durum wheat quality in Tuscany, Central Italy. Int. J. Biometeor., 55, 8796, https://doi.org/10.1007/s00484-010-0310-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniel, C., and E. Triboi, 2000: Effects of temperature and nitrogen nutrition on the grain composition of winter wheat: Effects on gliadin content and composition. J. Cereal Sci., 32, 4556, https://doi.org/10.1006/jcrs.2000.0313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, B. L., S. E. Hollinger, P. Garcia, and V. Tirupattur, 1994: Estimating corn yield response models to predict impact of climate change. J. Agric. Resour. Econ., 19, 5868.

    • Search Google Scholar
    • Export Citation
  • Eggert, H., and R. Tveterås, 2004: Stochastic production and heterogeneous risk preferences: Commercial fishers’ gear choices. Amer. J. Agric. Econ., 86, 199212, https://doi.org/10.1111/j.0092-5853.2004.00572.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erekul, O., and W. Köhn, 2006: Effect of weather and soil conditions on yield components and bread-making quality of winter wheat (Triticum aestivum L.) and winter triticale (Triticosecale Wittm.) varieties in north-east Germany. J. Agron. Crop Sci., 192, 452464, https://doi.org/10.1111/j.1439-037X.2006.00234.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahrmeir, L., T. Kneib, S. Lang, and B. Marx, 2013: Regression: Models, Methods and Applications. Springer, 698 pp.

    • Crossref
    • Export Citation
  • Flagella, Z., M. M. Giuliani, L. Giuzio, C. Volpi, and S. Masci, 2010: Influence of water deficit on durum wheat storage protein composition and technological quality. Eur. J. Agron., 33, 197207, https://doi.org/10.1016/j.eja.2010.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardebroek, C., M. D. Chavez, and A. O. Lansink, 2010: Analysing production technology and risk in organic and conventional Dutch arable farming using panel data. J. Agric. Econ., 61, 6075, https://doi.org/10.1111/j.1477-9552.2009.00222.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gooding, M. J., G. Smith, W. P. Davies, and P. S. Kettlewell, 1997: The use of residual maximum likelihood to model grain quality characters of wheat with variety, climatic and nitrogen fertilizer effects. J. Agric. Sci., 128, 135142, https://doi.org/10.1017/S0021859696004054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gooding, M. J., R. H. Ellis, P. R. Shewry, and J. D. Schofield, 2003: Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. J. Cereal Sci., 37, 295309, https://doi.org/10.1006/jcrs.2002.0501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, W. E., and J. R. Anderson, 1982: Using time-series and cross-section data to estimate a production function with positive and negative marginal risks. J. Amer. Stat. Assoc., 77, 529536, https://doi.org/10.1080/01621459.1982.10477842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häner, L. L., and C. Brabant, 2016: Die Kunst, den Stickstoffdünger für einen optimalen Ertrag und Proteingehalt von Weizen aufzuteilen (The art of dividing the nitrogen fertilizer for an optimal yield and protein content of wheat). Agrarforsch. Schweiz, 7, 8087, https://www.agrarforschungschweiz.ch/artikel/2016_02_2147.pdf.

    • Search Google Scholar
    • Export Citation
  • Haumann, G., H. Dietzsch, and B. C. Schäfer, 2011: Halm- und Körnerfrüchte. Winter- und Sommerweizen (Triticum aestivum L.) (Crop and cereal fruits. Winter and summer wheat). Lehrbuch des Pflanzenbaues. Band 2: Kulturpflanzen (Plant Production Textbook: Volume 2: Cultivated Plants), N. Lütke Entrup and B. C. Schäfer, Eds., AgroConcept, 311–416.

  • Hay, R. K. M., and J. R. Porter, 2006: The Physiology of Crop Yield. Wiley, 330 pp.

  • Jarvis, C. K., H. D. Sapirstein, P. R. Bullock, H. A. Naeem, S. V. Angadi, and A. Hussain, 2008: Models of growing season weather impacts on breadmaking quality of spring wheat from producer fields in western Canada. J. Sci. Food Agric., 88, 23572370, https://doi.org/10.1002/jsfa.3357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, E., and G. Svensson, 1998: Variation in bread-making quality: Effects of weather parameters on protein concentration and quality in some Swedish wheat cultivars grown during the period 1975–1996. J. Sci. Food Agric., 78, 109118, https://doi.org/10.1002/(SICI)1097-0010(199809)78:1<109::AID-JSFA92>3.0.CO;2-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Just, R. E., and R. D. Pope, 1978: Stochastic specification of production functions and economic implications. J. Econom., 7, 6786, https://doi.org/10.1016/0304-4076(78)90006-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Just, R. E., and R. D. Pope, 1979: Production function estimation and related risk considerations. Amer. J. Agric. Econ., 61, 276284, https://doi.org/10.2307/1239732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, M., 2011: Sortenspezifische Unterschiede beim Proteingehalt (Variety-specific differences in protein content). Innovation, 3/2011, 1213, https://www.magazin-innovation.de/export/sites/magazin-innovation.de/extras/dokumente/innovation-ab-3-2010/proteingehalt-3-11.pdf.

    • Search Google Scholar
    • Export Citation
  • Koundouri, P., and C. Nauges, 2005: On production function estimation with selectivity and risk considerations. J. Agric. Resour. Econ., 30, 597608.

    • Search Google Scholar
    • Export Citation
  • Lee, B.-H., P. Kenkel, and B. W. Brorsen, 2013: Pre-harvest forecasting of county wheat yield and wheat quality using weather information. Agric. For. Meteor., 168, 2635, https://doi.org/10.1016/j.agrformet.2012.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moschini, G., and D. A. Hennessy, 2001: Uncertainty, risk aversion, and risk management for agricultural producers. Agricultural Production, B. L. Gardner and G. C. Rausser, Eds., Elsevier, 87–153, https://doi.org/10.1016/S1574-0072(01)10005-8.

    • Crossref
    • Export Citation
  • Pan, J., Y. Zhu, W. Cao, T. Dai, and D. Jiang, 2006: Predicting the protein content of grain in winter wheat with meteorological and genotypic factors. Plant Prod. Sci., 9, 323333, https://doi.org/10.1626/pps.9.323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Partridge, J. R. D., and C. F. Shaykewich, 1972: Effects of nitrogen, temperature, and moisture regime on the yield and protein content of Neepawa wheat. Can. J. Soil Sci., 52, 179185, https://doi.org/10.4141/cjss72-022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, C. J., R. A. Graybosch, D. R. Shelton, and P. S. Baenziger, 1998: Baking quality of hard winter wheat: Response of cultivars to environment in the Great Plains. Euphytica, 100, 157162, https://doi.org/10.1023/A:1018361502435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porter, J. R., and M. A. Semenov, 2005: Crop responses to climatic variation. Philos. Trans. Roy. Soc. London, 360B, 20212035, https://doi.org/10.1098/rstb.2005.1752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, B., R. de Jong, R. Warren, A. Chipanshi, and H. Hill, 2009: Statistical spring wheat yield forecasting for the Canadian prairie provinces. Agric. For. Meteor., 149, 10221031, https://doi.org/10.1016/j.agrformet.2008.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, A. C. S., J. L. Smith, V. K. Jandhyala, R. I. Papendick, and J. F. Parr, 1993: Cultivar and climatic effects on the protein content of soft white winter wheat. Agron. J., 85, 10231028, https://doi.org/10.2134/agronj1993.00021962008500050013x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rharrabti, Y., D. Villegas, L. F. G. del Moral, N. Aparicio, S. Elhani, and C. Royo, 2001: Environmental and genetic determination of protein content and grain yield in durum wheat under Mediterranean conditions. Plant Breed., 120, 381388, https://doi.org/10.1046/j.1439-0523.2001.00628.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sale, P. J. M., 1974: Productivity of vegetable crops in a region of high solar input. III. Carbon balance of potato crops. Aust. J. Plant Physiol., 1, 283296, https://doi.org/10.1071/PP9740283.

    • Search Google Scholar
    • Export Citation
  • Semenov, M. A., 2009: Impacts of climate change on wheat in England and Wales. J. Roy. Soc. Interface, 6, 343350, https://doi.org/10.1098/rsif.2008.0285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, N. W., 1995: The relation between yield and protein in cereal grain. J. Sci. Food Agric., 67, 309315, https://doi.org/10.1002/jsfa.2740670306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, G. P., and M. J. Gooding, 1999: Models of wheat grain quality considering climate, cultivar and nitrogen effects. Agric. For. Meteor., 94, 159170, https://doi.org/10.1016/S0168-1923(99)00020-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Statistisches Bundesamt, 2017: Land- und Forstwirtschaft, Fischerei. Bodennutzung der Betriebe (Landwirtschaftlich genutzte Flächen) 2016 [Agriculture and forestry, fisheries: Land use on farms (agricultural land) 2016]. Destatis Rep., 61 pp., https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/Bodennutzung/LandwirtschaftlicheNutzflaeche2030312177004.pdf?__blob=publicationFile.

  • Stone, P. J., and R. Savin, 1999: Grain quality and its physiological determinants. Wheat: Ecology and Physiology of Yield Determination, E. H. Satorre and G. A. Slafer, Eds., Food Products Press, 114–122.

  • Tveterås, R., and G. H. Wan, 2000: Flexible panel data models for risky production technologies with an application to salmon aquaculture. Econom. Rev., 19, 367389, https://doi.org/10.1080/07474930008800477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., and J. Zhang, 2006: Grain filling of cereals under soil drying. New Phytol., 169, 223236, https://doi.org/10.1111/j.1469-8137.2005.01597.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 880 194 5
PDF Downloads 572 117 8