Influence of Soil Properties in Different Management Systems: Estimating Soybean Water Changes in the Agro-IBIS Model

Virnei Silva Moreira Universidade Federal do Pampa, Itaqui, Rio Grande do Sul, Brazil

Search for other papers by Virnei Silva Moreira in
Current site
Google Scholar
PubMed
Close
,
Luiz Antonio Candido Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil

Search for other papers by Luiz Antonio Candido in
Current site
Google Scholar
PubMed
Close
,
Debora Regina Roberti Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Search for other papers by Debora Regina Roberti in
Current site
Google Scholar
PubMed
Close
,
Geovane Webler Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Search for other papers by Geovane Webler in
Current site
Google Scholar
PubMed
Close
,
Marcelo Bortoluzzi Diaz Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Search for other papers by Marcelo Bortoluzzi Diaz in
Current site
Google Scholar
PubMed
Close
,
Luis Gustavo Gonçalves de Gonçalves Centro de Previsão de Tempo e Clima (CPTEC/INPE), Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Luis Gustavo Gonçalves de Gonçalves in
Current site
Google Scholar
PubMed
Close
,
Raphael Pousa Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil

Search for other papers by Raphael Pousa in
Current site
Google Scholar
PubMed
Close
, and
Gervásio Annes Degrazia Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil

Search for other papers by Gervásio Annes Degrazia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The water balance in agricultural cropping systems is dependent on the physical and hydraulic characteristics of the soil and the type of farming, both of which are sensitive to the soil management. Most models that describe the interaction between the surface and the atmosphere do not efficiently represent the physical differences across different soil management areas. In this study, the authors analyzed the dynamics of the water exchange in the agricultural version of the Integrated Biosphere Simulator (IBIS) model (Agro-IBIS) in the presence of different physical soil properties because of the different long-term soil management systems. The experimental soil properties were obtained from two management systems, no tillage (NT) and conventional tillage (CT) in a long-term experiment in southern Brazil in the soybean growing season of 2009/10. To simulate NT management, this study modified the top soil layer in the model to represent the residual layer. Moreover, a mathematical adjustment to the computation of leaf area index (LAI) is suggested to obtain a better representation of the grain fill to the physiological maturity period. The water exchange dynamics simulated using Agro-IBIS were compared against experimental data collected from both tillage systems. The results show that the model well represented the water dynamics in the soil and the evapotranspiration (ET) in both management systems, in particular during the wet periods. Better results were found for the conventional tillage management system for the water balance. However, with the incorporation of a residual layer and soil properties in NT, the model improved the estimation of evapotranspiration by 6%. The ability of the Agro-IBIS model to estimate ET indicates its potential application in future climate scenarios.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

f Corresponding author: Debora Regina Roberti, debora@ufsm.br

Abstract

The water balance in agricultural cropping systems is dependent on the physical and hydraulic characteristics of the soil and the type of farming, both of which are sensitive to the soil management. Most models that describe the interaction between the surface and the atmosphere do not efficiently represent the physical differences across different soil management areas. In this study, the authors analyzed the dynamics of the water exchange in the agricultural version of the Integrated Biosphere Simulator (IBIS) model (Agro-IBIS) in the presence of different physical soil properties because of the different long-term soil management systems. The experimental soil properties were obtained from two management systems, no tillage (NT) and conventional tillage (CT) in a long-term experiment in southern Brazil in the soybean growing season of 2009/10. To simulate NT management, this study modified the top soil layer in the model to represent the residual layer. Moreover, a mathematical adjustment to the computation of leaf area index (LAI) is suggested to obtain a better representation of the grain fill to the physiological maturity period. The water exchange dynamics simulated using Agro-IBIS were compared against experimental data collected from both tillage systems. The results show that the model well represented the water dynamics in the soil and the evapotranspiration (ET) in both management systems, in particular during the wet periods. Better results were found for the conventional tillage management system for the water balance. However, with the incorporation of a residual layer and soil properties in NT, the model improved the estimation of evapotranspiration by 6%. The ability of the Agro-IBIS model to estimate ET indicates its potential application in future climate scenarios.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

f Corresponding author: Debora Regina Roberti, debora@ufsm.br
Save
  • Abramopoulos, F., C. Rosenzweig, and B. Choudhury, 1988: Improved ground hydrology calculations for global climate models (GCMs): Soil water movement and evapotranspiration. J. Climate, 1, 921941, https://doi.org/10.1175/1520-0442(1988)001<0921:IGHCFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, http://www.fao.org/docrep/X0490E/X0490E00.htm.

  • Almaraz, J. J., X. Zhou, F. Mabood, C. Madramootoo, P. Rochette, B.-L. Ma, and D. L. Smith, 2009: Greenhouse gas fluxes associated with soybean production under two tillage systems in southwestern Quebec. Soil Tillage Res., 104, 134139, https://doi.org/10.1016/j.still.2009.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aubinet, M., and Coauthors, 1999: Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res., 30, 113175, https://doi.org/10.1016/S0065-2504(08)60018-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagley, J. E., J. Miller, and C. J. Bernacchi, 2015: Biophysical impacts of climate-smart agriculture in the Midwest United States. Plant Cell Environ., 38, 19131930, https://doi.org/10.1111/pce.12485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., B. B. Hincks, and T. P. Meyers, 1988: Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69, 13311340, https://doi.org/10.2307/1941631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhattacharyya, R., V. Prakash, S. Kundu, and H. S. Gupta, 2006: Effect of tillage and crop rotations on pore size distribution and soil hydraulic conductivity in sandy clay loam soil of the Indian Himalayas. Soil Tillage Res., 86, 129140, https://doi.org/10.1016/j.still.2005.02.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blevins, R. L., W. W. Frye, P. L. Baldwin, and S. D. Robertson, 1990: Tillage effects on sediment and soluble nutrient losses from a Maury silt loam soil. J. Environ. Qual., 19, 683686, https://doi.org/10.2134/jeq1990.00472425001900040009x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bortolotto, R. P., and Coauthors, 2015: Soil carbon dioxide flux in a no-tillage winter system. Afr. J. Agric. Res., 10, 450457, https://doi.org/10.5897/AJAR2014.9399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, G. S., 1974: A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci., 117, 311314, https://doi.org/10.1097/00010694-197406000-00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavez, L. F., T. J. C. Amado, C. Bayer, N. J. La Scala, L. F. Escobar, J. E. Fiorin, and B.-H. C. de Campos, 2009: Carbon dioxide efflux in a rhodic hapludox as affected by tillage systems in southern Brazil. Rev. Bras. Cienc. Solo, 33, 325–334, https://doi.org/10.1590/S0100-06832009000200010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., G. R. Willgoose, and P. M. Saco, 2015: Evaluation of the hydrology of the IBIS land surface model in a semi-arid catchment. Hydrol. Processes, 29, 653670, https://doi.org/10.1002/hyp.10156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, S.-O., and R. Horton, 1987: Soil heat and water flow with a partial surface mulch. Water Resour. Res., 23, 21752186, https://doi.org/10.1029/WR023i012p02175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, F. S., J. A. Albuquerque, C. Bayer, S. M. V. Fontoura, and C. Wobeto, 2003: Physical properties of a south Brazilian Oxisol as affected by no-tillage and conventional tillage systems. Rev. Bras. Cienc. Solo, 27, 527535, https://doi.org/10.1590/S0100-06832003000300014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., S. V. Kumar, and J. D. Bolten, 2012: On the utility of land surface models for agricultural drought monitoring. Hydrol. Earth Syst. Sci., 16, 34513460, https://doi.org/10.5194/hess-16-3451-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuadra, S. V., and Coauthors, 2012: A biophysical model of sugarcane growth. Global Change Biol. Bioenergy, 4, 3648, https://doi.org/10.1111/j.1757-1707.2011.01105.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Vita, P., E. Di Paolo, G. Fecondo, N. Di Fonzo, and M. Pisante, 2007: No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res., 92, 6978, https://doi.org/10.1016/j.still.2006.01.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dingman, S. L., 2002: Physical Hydrology. 2nd ed. Prentice Hall, 646 pp.

  • El Maayar, M., and O. Sonnentag, 2009: Crop model validation and sensitivity to climate change scenarios. Climate Res., 39, 4759, https://doi.org/10.3354/cr00791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fehr, W. R., and C. E. Caviness, 1977: Stages of soybean development. Cooperative Extension Service, Agriculture and Home Economics Experiment Station, Iowa State University Special Report 80, 11 pp.

  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603628, https://doi.org/10.1029/96GB02692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaofeng, Z., and Coauthors, 2014: Energy flux partitioning and evapotranspiration in a sub-alpine spruce forest ecosystem. Hydrol. Processes, 28, 50935104, https://doi.org/10.1002/hyp.9995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerrits, A. M. J., H. H. G. Savenije, L. Hoffmann, and L. Pfister, 2007: New technique to measure forest floor interception—An application in a beech forest in Luxembourg. Hydrol. Earth Syst. Sci., 11, 695701, https://doi.org/10.5194/hess-11-695-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gubiani, P. I., D. J. Reinert, J. M. Reichert, N. S. Gelain, and J. P. G. Minella, 2010: Falling head permeameter and software to determine the hydraulic conductivity of saturated soil. Rev. Bras. Cienc. Solo, 34, 993997, https://doi.org/10.1590/S0100-06832010000300041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1989: Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods. Atmos. Environ., 23, 13851398, https://doi.org/10.1016/0004-6981(89)90161-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, C.-I., G. Katul, and T. Chi, 2000: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour., 23, 765772, https://doi.org/10.1016/S0309-1708(99)00042-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, B. D., 1994: Soil organic matter and available water capacity. J. Soil Water Conserv., 49, 189194.

  • Ingwersen, J., and Coauthors, 2011: Comparison of Noah simulations with eddy covariance and soil water measurements at a winter wheat stand. Agric. For. Meteor., 151, 345355, https://doi.org/10.1016/j.agrformet.2010.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, B. D., and A. J. VandenBygaart, 2002: Conservation tillage and depth stratification of porosity and soil organic matter. Soil Tillage Res., 66, 107118, https://doi.org/10.1016/S0167-1987(02)00019-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozak, J. A., L. R. Ahuja, T. R. Green, and L. Ma, 2007: Modelling crop canopy and residue rainfall interception effects on soil hydrological components for semi-arid agriculture. Hydrol. Processes, 21, 229241, https://doi.org/10.1002/hyp.6235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and K. R. Brye, 2003: Integrated Biosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J. Environ. Qual., 32, 247268, https://doi.org/10.2134/jeq2003.2470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and T. E. Twine, 2007: Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. Agric. For. Meteor., 146, 134158, https://doi.org/10.1016/j.agrformet.2007.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and Coauthors, 2000: Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles, 14, 795825, https://doi.org/10.1029/1999GB001138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., A. VanLoocke, J. D. Lenters, and M. M. Motew, 2013: Miscanthus establishment and overwintering in the Midwest USA: A regional modeling study of crop residue management on critical minimum soil temperatures. PLoS One, 8, e68847, https://doi.org/10.1371/journal.pone.0068847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamari, L., 2008: Assess 2.0: Image analysis software for plant disease quantification. American Phytopathological Society.

  • Li, X., J. Niu, and B. Xie, 2013: Study on hydrological functions of litter layers in north China. PLoS One, 8, e70328, https://doi.org/10.1371/journal.pone.0070328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and J. Guo, 2003: Intercomparison of land-surface parameterization schemes: Sensitivity of surface energy and water fluxes to model parameters. J. Hydrol., 279, 182209, https://doi.org/10.1016/S0022-1694(03)00168-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lokupitiya, E., and Coauthors, 2009: Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands. Biogeosciences, 6, 969986, https://doi.org/10.5194/bg-6-969-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundberg, A., M. Eriksson, S. Halldin, E. Kellner, and J. Seibert, 1997: New approach to the measurement of interception evaporation. J. Atmos. Oceanic Technol., 14, 10231035, https://doi.org/10.1175/1520-0426(1997)014<1023:NATTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., and J. Noilhan, 1991: Comparative study of various formulations of evaporations from bare soil using in situ data. J. Appl. Meteor., 30, 13541365, https://doi.org/10.1175/1520-0450(1991)030<1354:CSOVFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., L. N. Long, Y. Xia, S. K. Yang, J. E. Schemm, and M. Ek, 2011: Drought indices based on the climate forecast system reanalysis and ensemble NLDAS. J. Hydrometeor., 12, 181205, https://doi.org/10.1175/2010JHM1310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moreira, V. S., and Coauthors, 2015: Seasonality of soil water exchange in the soybean growing season in southern Brazil. Sci. Agric., 72, 103113, https://doi.org/10.1590/0103-9016-2014-0056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olivier, F., and A. Singels, 2012: The effect of crop residue layers on evapotranspiration, growth and yield of irrigated sugarcane. Water SA, 38, 7786, https://doi.org/10.4314/wsa.v38i1.10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, https://doi.org/10.5194/hess-11-1633-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, D., 1995: Use of a land-surface-transfer scheme (LSX) in a global climate model: The response to doubling stomatal resistance. Global Planet. Change, 10, 129161, https://doi.org/10.1016/0921-8181(94)00023-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichert, J. M., L. E. A. S. Suzuki, D. J. Reinert, R. Horn, and I. Håkansson, 2009: Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res., 102, 242254, https://doi.org/10.1016/j.still.2008.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichstein, M., and Coauthors, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biol., 11, 14241439, https://doi.org/10.1111/j.1365-2486.2005.001002.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, R. C., R. L. Baumhardt, and S. R. Evett, 2010: Tillage effects on soil water redistribution and bare soil evaporation throughout a season. Soil Tillage Res., 110, 221229, https://doi.org/10.1016/j.still.2010.07.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y., A. K. Jain, and G. F. McIsaac, 2013: Implementation of dynamic crop growth processes into a land surface model: Evaluation of energy, water and carbon fluxes under corn and soybean rotation. Biogeosciences, 10, 80398066, https://doi.org/10.5194/bg-10-8039-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tormena, C. A., M. C. Barbosa, A. C. S. da Costa, and C. A. Gonçalves, 2002: Densidade, porosidade e resistência à penetração em latossolo cultivado sob diferentes sistemas de preparo do solo. Sci. Agric., 59, 795801, https://doi.org/10.1590/S0103-90162002000400026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twine, T. E., J. J. Bryant, K. T. Richter, C. J. Bernacchi, K. D. McConnaughay, S. J. Morris, and A. D. B. Leakey, 2013: Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA. Global Change Biol., 19, 28382852, https://doi.org/10.1111/gcb.12270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Donk, S. J., D. L. Martin, S. Irmak, S. R. Melvin, J. L. Petersen, and D. R. Davison, 2010: Crop residue cover effects on evaporation soil water content, and yield of deficit-irrigated corn in west-central Nebraska. Trans. ASABE, 53, 17871797, https://doi.org/10.13031/2013.35805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanloocke, A., C. J. Bernacchi, and T. E. Twine, 2010: The impacts of Miscanthus×giganteus production on the Midwest US hydrologic cycle. GCB Bioenergy, 2, 180191, https://doi.org/10.1111/j.1757-1707.2010.01053.x.

    • Search Google Scholar
    • Export Citation
  • Van Wijk, W. R., and D. A. DeVries, 1963: Periodic temperature variations in a homogeneous soil. Physics of the Plant Environment, W. R. Van Wijk, Ed., Wiley, 102–143.

  • Verkler, T. L., K. R. Brye, E. E. Gbur, J. H. Popp, and N. Amuri, 2008: Residue management and water delivery effects on season-long surface soil water dynamics in soybean. Soil Sci., 173, 444455, https://doi.org/10.1097/SS.0b013e31817b6687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100, https://doi.org/10.1002/qj.49710644707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webler, G., D. R. Roberti, S. V. Cuadra, V. S. Moreira, and M. H. Costa, 2012: Evaluation of a dynamic agroecosystem model (Agro-IBIS) for soybean in southern Brazil. Earth Interact., 16, 115, https://doi.org/10.1175/2012EI000452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Z., P. Paredes, Y. Liu, W. W. Chi, and L. S. Pereira, 2015: Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agric. Water Manage., 147, 4353, https://doi.org/10.1016/j.agwat.2014.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 1990: Scalar fluxes in the planetary boundary layer—Theory, modeling, and measurement. Bound.-Layer Meteor., 50, 4975, https://doi.org/10.1007/BF00120518.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 0 0
Full Text Views 306 117 8
PDF Downloads 157 41 4