Climate Impacts from Afforestation and Deforestation in Europe

G. Strandberg Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, and Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by G. Strandberg in
Current site
Google Scholar
PubMed
Close
and
E. Kjellström Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, and Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by E. Kjellström in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Changes in vegetation are known to have an impact on climate via biogeophysical effects such as changes in albedo and heat fluxes. Here, the effects of maximum afforestation and deforestation are studied over Europe. This is done by comparing three regional climate model simulations—one with present-day vegetation, one with maximum afforestation, and one with maximum deforestation. In general, afforestation leads to more evapotranspiration (ET), which leads to decreased near-surface temperature, whereas deforestation leads to less ET, which leads to increased temperature. There are exceptions, mainly in regions with little water available for ET. In such regions, changes in albedo are relatively more important for temperature. The simulated biogeophysical effect on seasonal mean temperature varies between 0.5° and 3°C across Europe. The effect on minimum and maximum temperature is larger than that on mean temperature. Increased (decreased) mean temperature is associated with an even larger increase (decrease) in maximum summer (minimum winter) temperature. The effect on precipitation is found to be small. Two additional simulations in which vegetation is changed in only one-half of the domain were also performed. These simulations show that the climatic effects from changed vegetation in Europe are local. The results imply that vegetation changes have had, and will have, a significant impact on local climate in Europe; the climatic response is comparable to climate change under RCP2.6. Therefore, effects from vegetation change should be taken into account when simulating past, present, and future climate for this region. The results also imply that vegetation changes could be used to mitigate local climate change.

ORCID ID: 0000-0003-2689-9360.

ORCID ID: 0000-0002-6495-1038.

This article is included in the Biogeophysical Climate Impacts of Land Use and Land Cover Change (LULCC) special collection.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gustav Strandberg, gustav.strandberg@smhi.se

Abstract

Changes in vegetation are known to have an impact on climate via biogeophysical effects such as changes in albedo and heat fluxes. Here, the effects of maximum afforestation and deforestation are studied over Europe. This is done by comparing three regional climate model simulations—one with present-day vegetation, one with maximum afforestation, and one with maximum deforestation. In general, afforestation leads to more evapotranspiration (ET), which leads to decreased near-surface temperature, whereas deforestation leads to less ET, which leads to increased temperature. There are exceptions, mainly in regions with little water available for ET. In such regions, changes in albedo are relatively more important for temperature. The simulated biogeophysical effect on seasonal mean temperature varies between 0.5° and 3°C across Europe. The effect on minimum and maximum temperature is larger than that on mean temperature. Increased (decreased) mean temperature is associated with an even larger increase (decrease) in maximum summer (minimum winter) temperature. The effect on precipitation is found to be small. Two additional simulations in which vegetation is changed in only one-half of the domain were also performed. These simulations show that the climatic effects from changed vegetation in Europe are local. The results imply that vegetation changes have had, and will have, a significant impact on local climate in Europe; the climatic response is comparable to climate change under RCP2.6. Therefore, effects from vegetation change should be taken into account when simulating past, present, and future climate for this region. The results also imply that vegetation changes could be used to mitigate local climate change.

ORCID ID: 0000-0003-2689-9360.

ORCID ID: 0000-0002-6495-1038.

This article is included in the Biogeophysical Climate Impacts of Land Use and Land Cover Change (LULCC) special collection.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gustav Strandberg, gustav.strandberg@smhi.se
Save
  • Alexandru, A., and L. Sushama, 2016: Impact of land-use and land-cover changes on CRCM5 climate projections over North America for the twenty-first century. Climate Dyn., 47, 11971209, https://doi.org/10.1007/s00382-015-2896-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, T., R. A. Betts, B. B. B. Booth, C. D. Jones, and G. Jones, 2017: Effective radiative forcing from historical land use change. Climate Dyn., 48, 34893505, https://doi.org/10.1007/s00382-016-3280-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arneth, A., and Coauthors, 2010: Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci., 3, 525532, https://doi.org/10.1038/ngeo905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, F. B., A. J. Pitman, M. G. Donat, L. V. Alexander, and G. Abramowitz, 2012: Climate model simulated changes in temperature extremes due to land cover change. J. Geophys. Res., 117, D04108, https://doi.org/10.1029/2011JD016382.

    • Search Google Scholar
    • Export Citation
  • Bala, G., K. Caldeira, M. Wickett, T. J. Phillips, D. B. Lobell, C. Delire, and A. Mirin, 2007: Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA, 104, 65506555, https://doi.org/10.1073/pnas.0608998104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bathiany, S., M. Claussen, V. Brovkin, T. Raddatz, and V. Gayler, 2010: Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences, 7, 13831399, https://doi.org/10.5194/bg-7-1383-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, R. A., P. D. Falloon, K. Klein Goldewijk, and N. Ramankutty, 2007: Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. Agric. For. Meteor., 142, 216233, https://doi.org/10.1016/j.agrformet.2006.08.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brovkin, V., and Coauthors, 2006: Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Climate Dyn., 26, 587600, https://doi.org/10.1007/s00382-005-0092-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brovkin, V., and Coauthors, 2013: Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J. Climate, 26, 68596881, https://doi.org/10.1175/JCLI-D-12-00623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, T. R., and Coauthors, 2007: New assessment methods and the characterization of future conditions. Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 133–171.

  • Champeaux, J. L., V. Masson, and F. Chauvin, 2005: ECOCLIMAP: A global database of land surface parameters at 1 km resolution. Meteor. Appl., 12, 2932, https://doi.org/10.1017/S1350482705001519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., P. A. Stott, G. C. Hegerl, and R. A. Betts, 2013: The role of land use change in the recent warming of daily extreme temperatures. Geophys. Res. Lett., 40, 589594, https://doi.org/10.1002/grl.50159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cubasch, U., D. Wuebbles, D. Chen, M. C. Facchini, D. Frame, N. Mahowald, and J.-G. Winther, 2013: Introduction. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 119–158, https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Chapter01_FINAL.pdf.

  • Davin, E. L., S. I. Seneviratne, P. Ciais, A. Olioso, and T. Wang, 2014: Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA, 111, 97579761, https://doi.org/10.1073/pnas.1317323111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., E. Shevliakova, P. C. D. Milly, and R. J. Stouffer, 2007: Modeled impact of anthropogenic land cover change on climate. J. Climate, 20, 36213634, https://doi.org/10.1175/JCLI4185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., A. J. Pitman, M. H. England, and P. J. Pegion, 2009: Regional and global impacts of land cover change and sea surface temperature anomalies. J. Climate, 22, 32483269, https://doi.org/10.1175/2008JCLI2580.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234, https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter2-1.pdf.

  • Gaillard, M.-J., and Coauthors, 2010: Holocene land-cover reconstructions for studies on land cover–climate feedbacks. Climate Past, 6, 483499, https://doi.org/10.5194/cp-6-483-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gálos, B., C. Mátyás, and D. Jacob, 2011: Regional characteristics of climate change altering effects of afforestation. Environ. Res. Lett., 6, 044010, https://doi.org/10.1088/1748-9326/6/4/044010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gálos, B., A. Hänsler, G. Kindermann, D. Rechid, K. Sieck, and D. Jacob, 2012: The role of forests in mitigating climate change—A case study for Europe. Acta Silv. Lign. Hung., 8, 87102, https://doi.org/10.2478/v10303-012-0007-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., T. Markkanen, L. Backman, H. M. Henttonen, J.-P. Pietikäinen, H. M. Mäkelä, and A. Laaksonen, 2014: Biogeophysical impacts of peatland forestation on regional climate changes in Finland. Biogeosciences, 11, 72517267, https://doi.org/10.5194/bg-11-7251-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., J. Guiot, M. E. Mann, S. Dubinkina, and Y. Sallaz-Damaz, 2012: The medieval climate anomaly in Europe: Comparison of the summer and annual mean signals in two reconstructions and in simulations with data assimilation. Global Planet. Change, 84–85, 3547, https://doi.org/10.1016/j.gloplacha.2011.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, L. P., J. Olsson, E. Kjellström, J. Rosberg, S.-S. Hellström, and R. Berndtsson, 2009: Simulating river flow to the Baltic Sea from climate simulations over the past millennium. Boreal Environ. Res., 14, 173182.

    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Comm., 6, 6443, https://doi.org/10.1038/ncomms7443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, F., S. J. Vavrus, J. E. Kutzbach, W. F. Ruddiman, J. O. Kaplan, and K. M. Krumhardt, 2014: Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change. Geophys. Res. Lett., 41, 623631, https://doi.org/10.1002/2013GL058085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickler, T., B. Smith, M. T. Sykes, M. B. Davis, S. Sugita, and K. Walker, 2004: Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology, 85, 519530, https://doi.org/10.1890/02-0344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickler, T., and Coauthors, 2012: Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecol. Biogeogr., 21, 5063, https://doi.org/10.1111/j.1466-8238.2010.00613.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jahn, A., M. Claussen, A. Ganopolski, and V. Brovkin, 2005: Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum. Climate Past, 1, 17, https://doi.org/10.5194/cp-1-1-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., J. L. Monteith, and P. E. Weatherley, 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, 273B, 593610, https://doi.org/10.1098/rstb.1976.0035.

    • Search Google Scholar
    • Export Citation
  • Jones, A. D., K. V. Calvin, W. D. Collins, and J. Edmonds, 2015: Accounting for radiative forcing from albedo change in future global land-use scenarios. Climatic Change, 131, 691703, https://doi.org/10.1007/s10584-015-1411-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., K. Krumhardt, and N. Zimmermann, 2009: The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev., 28, 30163034, https://doi.org/10.1016/j.quascirev.2009.09.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelliher, F. M., R. Leuning, and E.-D. Schulze, 1993: Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia, 95, 153163, https://doi.org/10.1007/BF00323485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keys, P. W., L. Wang-Erlandsson, and L. J. Gordon, 2016: Revealing invisible water: Moisture recycling as an ecosystem service. PLOS ONE, 11, e0151993, https://doi.org/10.1371/journal.pone.0151993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kjellström, E., 2004: Recent and future signatures of climate change in Europe. Ambio, 33, 193199, https://doi.org/10.1579/0044-7447-33.4.193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kjellström, E., J. Brandefelt, J. O. Näslund, B. Smith, G. Strandberg, A. H. L. Voelker, and B. Wohlfarth, 2010: Simulated climate conditions in Fennoscandia during a MIS 3 stadial. Boreas, 39, 436456, https://doi.org/10.1111/j.1502-3885.2010.00143.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kjellström, E., G. Nikulin, U. Hansson, G. Strandberg, and A. Ullerstig, 2011: 21st century changes in the European climate: Uncertainties derived from an ensemble of regional climate model simulations. Tellus, 63A, 2440, https://doi.org/10.1111/j.1600-0870.2010.00475.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kjellström, E., L. Bärring, G. Nikulin, C. Nilsson, G. Persson, and G. Strandberg, 2016: Production and use of regional climate model projections—A Swedish perspective on building climate services. Climate Serv., 2–3, 1529, https://doi.org/10.1016/j.cliser.2016.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kjellström, E., and Coauthors, 2018: European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models. Earth Syst. Dyn., 9, 459478, https://doi.org/10.5194/esd-9-459-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleidon, A., K. Fraedrich, and M. Heimann, 2000: A green planet versus a desert world: Estimating the maximum effect of vegetation on the land surface climate. Climatic Change, 44, 471493, https://doi.org/10.1023/A:1005559518889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein Goldewijk, K., A. Beusen, M. de Vos, and G. van Drecht, 2011: The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecol. Biogeogr., 20, 7386, https://doi.org/10.1111/j.1466-8238.2010.00587.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levis, S., 2010: Modeling vegetation and land use in models of the Earth system. Wiley Interdiscip. Rev.: Climate Change, 1, 840856, https://doi.org/10.1002/wcc.83.

    • Search Google Scholar
    • Export Citation
  • McIlveen, R., 1992: Fundamentals of Weather and Climate. Chapman and Hall, 500 pp.

    • Crossref
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740, https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf.

  • Mykleby, P. M., P. K. Snyder, and T. E. Twine, 2017: Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American forests. Geophys. Res. Lett., 44, 24932501, https://doi.org/10.1002/2016GL071459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikulin, G., E. Kjellström, U. Hansson, G. Strandberg, and A. Ullerstig, 2011: Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus, 63A, 4155, https://doi.org/10.1111/j.1600-0870.2010.00466.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perugini, L., L. Caporaso, S. Marconi, A. Cescatti, B. Quesada, N. de Noblet-Ducoudré, J. I. House, and A. Arneth, 2017: Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett., 12, 053002, https://doi.org/10.1088/1748-9326/aa6b3f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., R. Avissar, M. Raupach, A. J. Dolman, X. Zeng, and A. S. Denning, 1998: Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biol., 4, 461475, https://doi.org/10.1046/j.1365-2486.1998.t01-1-00176.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, E., Y. Shin, S. A. Cowling, and C. D. Jones, 2009: Past, present and future vegetation-cloud feedbacks in the Amazon Basin. Climate Dyn., 32, 741751, https://doi.org/10.1007/s00382-009-0536-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, https://doi.org/10.1029/2009GL039076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pongratz, J., T. Raddatz, C. H. Reick, M. Esch, and M. Claussen, 2009: Radiative forcing from anthropogenic land cover change since A.D. 800. Geophys. Res. Lett., 36, L02709, https://doi.org/10.1029/2008GL036394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quintanar, A., and R. Mahmood, 2012: Ensemble forecast spread induced by soil moisture changes over mid-south and neighbouring mid-western region of the USA. Tellus, 64A, 17156, https://doi.org/10.3402/tellusa.v64i0.17156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Räisänen, J., and Coauthors, 2004: European climate in the late twenty-first century: Regional simulations with two driving global models and two forcing scenarios. Climate Dyn., 22, 1331, https://doi.org/10.1007/s00382-003-0365-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roy, S. S., R. Mahmood, D. Niyogi, M. Lei, S. A. Foster, K. G. Hubbard, E. Douglas, and R. Pielke Sr., 2007: Impacts of the agricultural Green Revolution–induced land use changes on air temperatures in India. J. Geophys. Res., 112, D21108, https://doi.org/10.1029/2007JD008834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rummukainen, M., 2010: State-of-the-art with regional climate models. Wiley Interdiscip. Rev.: Climate Change, 1, 8296, https://doi.org/10.1002/wcc.8.

    • Search Google Scholar
    • Export Citation
  • Rummukainen, M., J. Räisänen, B. Bringfelt, A. Ullerstig, A. Omstedt, U. Willén, U. Hansson, and C. Jones, 2001: A regional climate model for northern Europe: Model description and results from the downscaling of two GCM control simulations. Climate Dyn., 17, 339359, https://doi.org/10.1007/s003820000109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, S., J. Sillmann, and E. M. Fischer, 2015: Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett., 10, 124003, https://doi.org/10.1088/1748-9326/10/12/124003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samuelsson, P., and Coauthors, 2011: The Rossby Centre Regional Climate model RCA3: Model description and performance, Tellus, 63A, 423, https://doi.org/10.1111/j.1600-0870.2010.00478.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schimanke, S., H. E. M. Meier, E. Kjellström, G. Strandberg, and R. Hordoir, 2012: The climate in the Baltic Sea region during the last millennium simulated with a regional climate model. Climate Past, 8, 14191433, https://doi.org/10.5194/cp-8-1419-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I. and Coauthors, 2013: Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett., 40, 52125217, https://doi.org/10.1002/grl.50956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B., I. C. Prentice, and M. T. Sykes, 2001: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space. Global Ecol. Biogeogr., 10, 621637, https://doi.org/10.1046/j.1466-822X.2001.00256.x.

    • Search Google Scholar
    • Export Citation
  • Smith, P., and Coauthors, 2014: Agriculture, forestry and other land use (AFOLU). Climate Change 2014: Mitigation of Climate Change, O. Edenhofer et al., Eds., Cambridge University Press, 811–922, https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter11.pdf.

  • Stéfanon, M., S. Schindler, P. Drobinski, N. de Noblet-Ducoudré, and F. D’Andrea, 2014: Simulating the effect of anthropogenic vegetation land cover on heatwave temperatures over central France. Climate Res., 60, 133146, https://doi.org/10.3354/cr01230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strandberg, G., J. Brandefelt, E. Kjellström, and B. Smith, 2011: High-resolution regional simulation of the last glacial maximum climate in Europe. Tellus, 63A, 107125, https://doi.org/10.1111/j.1600-0870.2010.00485.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strandberg, G., and Coauthors, 2014: Regional climate model simulations for Europe at 6 and 0.2 k BP: Sensitivity to changes in anthropogenic deforestation. Climate Past, 10, 661680, https://doi.org/10.5194/cp-10-661-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strandberg, G., and Coauthors, 2015: CORDEX scenarios for Europe from the Rossby Centre regional climate model RCA4. SMHI Meteorology and Climatology Rep. 116, 84 pp., https://www.smhi.se/polopoly_fs/1.90275!/Menu/general/extGroup/attachmentColHold/mainCol1/file/RMK_116.pdf.

  • Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, https://doi.org/10.1038/nature11377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., and Coauthors, 2010: Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci., 3, 722727, https://doi.org/10.1038/ngeo950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trondman, A. K., and Coauthors, 2015: Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. Global Change Biol., 21, 676697, https://doi.org/10.1111/gcb.12737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., and H. H. G. Savenije, 2011: Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys., 11, 18531863, https://doi.org/10.5194/acp-11-1853-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., M. J. G. den Elzen, P. L. Lucas, B. Eickhout, B. J. Strengers, B. van Ruijven, S. Wonink, and R. van Houdt, 2007: Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change, 81, 119159, https://doi.org/10.1007/s10584-006-9172-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2014: The European climate under a 2°C global warming. Environ. Res. Lett., 9, 034006, https://doi.org/10.1088/1748-9326/9/3/034006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winchester, J., R. Mahmood, W. Rodgers, F. Hossain, E. Rappin, J. Durkee, and T. Chronis, 2017: A model-based assessment of potential impacts of man-made reservoirs on precipitation. Earth Interact., 21, https://doi.org/10.1175/EI-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wramneby, A., B. Smith, and P. Samuelsson, 2010: Hot spots of vegetation-climate feedbacks under future greenhouse forcing in Europe. J. Geophys. Res., 115, D21119, https://doi.org/10.1029/2010JD014307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., G. Schurgers, M. Rummukainen, B. Smith, P. Samuelsson, C. Jansson, J. Siltberg, and W. May, 2016: Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth Syst. Dyn., 7, 627647, https://doi.org/10.5194/esd-7-627-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., G. Schurgers, A. Ahlström, M. Rummukainen, P. Miller, B. Smith, and W. May, 2017: Impacts of land use on climate and ecosystem productivity over the Amazon and the South American continent. Environ. Res. Lett., 12, 054016, https://doi.org/10.1088/1748-9326/aa6fd6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zampieri, M., and P. Lionello, 2011: Anthropic land use causes summer cooling in central Europe. Climate Res., 46, 255268, https://doi.org/10.3354/cr00981.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10221 1259 42
PDF Downloads 3379 573 33