The Iowa Atmospheric Observatory: Revealing the Unique Boundary Layer Characteristics of a Wind Farm

Eugene S. Takle Department of Agronomy, Iowa State University, Ames, Iowa

Search for other papers by Eugene S. Takle in
Current site
Google Scholar
PubMed
Close
,
Daniel A. Rajewski Iowa State University, Ames, Iowa

Search for other papers by Daniel A. Rajewski in
Current site
Google Scholar
PubMed
Close
, and
Samantha L. Purdy Iowa State University, Ames, Iowa

Search for other papers by Samantha L. Purdy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Iowa Atmospheric Observatory was established to better understand the unique microclimate characteristics of a wind farm. The facility consists of a pair of 120-m towers identically instrumented to observe basic landscape–atmosphere interactions in a highly managed agricultural landscape. The towers, one within and one outside of a utility-scale low-density-array wind farm, are equipped to measure vertical profiles of temperature, wind, moisture, and pressure and can host specialized sensors for a wide range of environmental conditions. Tower measurements during the 2016 growing season demonstrate the ability to distinguish microclimate differences created by single or multiple turbines from natural conditions over homogeneous agricultural fields. Microclimate differences between the two towers are reported as contrasts in normalized wind speed, normalized turbulence intensity, potential temperature, and water vapor mixing ratio. Differences are analyzed according to conditions of no wind farm influence (i.e., no wake) versus wind farm influence (i.e., waked flow) with distance downwind from a single wind turbine or a large group of turbines. Differences are also determined for more specific atmospheric conditions according to thermal stratification. Results demonstrate agreement with most, but not all, currently available numerical flow-field simulations of large wind farm arrays and of individual turbines. In particular, the well-documented higher nighttime surface temperature in wind farms is examined in vertical profiles that confirm this effect to be a “suppression of cooling” rather than a warming process. A summary is provided of how the wind farm boundary layer differs from the natural boundary layer derived from concurrent measurements over the summer of 2016.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

a Corresponding author: Eugene S. Takle, gstakle@iastate.edu

Abstract

The Iowa Atmospheric Observatory was established to better understand the unique microclimate characteristics of a wind farm. The facility consists of a pair of 120-m towers identically instrumented to observe basic landscape–atmosphere interactions in a highly managed agricultural landscape. The towers, one within and one outside of a utility-scale low-density-array wind farm, are equipped to measure vertical profiles of temperature, wind, moisture, and pressure and can host specialized sensors for a wide range of environmental conditions. Tower measurements during the 2016 growing season demonstrate the ability to distinguish microclimate differences created by single or multiple turbines from natural conditions over homogeneous agricultural fields. Microclimate differences between the two towers are reported as contrasts in normalized wind speed, normalized turbulence intensity, potential temperature, and water vapor mixing ratio. Differences are analyzed according to conditions of no wind farm influence (i.e., no wake) versus wind farm influence (i.e., waked flow) with distance downwind from a single wind turbine or a large group of turbines. Differences are also determined for more specific atmospheric conditions according to thermal stratification. Results demonstrate agreement with most, but not all, currently available numerical flow-field simulations of large wind farm arrays and of individual turbines. In particular, the well-documented higher nighttime surface temperature in wind farms is examined in vertical profiles that confirm this effect to be a “suppression of cooling” rather than a warming process. A summary is provided of how the wind farm boundary layer differs from the natural boundary layer derived from concurrent measurements over the summer of 2016.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

a Corresponding author: Eugene S. Takle, gstakle@iastate.edu
Save
  • Abkar, M., and F. Porté-Agel, 2015: Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study. Phys. Fluids, 27, 035104, https://doi.org/10.1063/1.4913695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abkar, M., A. Sharifi, and F. Porté-Agel, 2016: Wake flow in a wind farm during a diurnal cycle. J. Turbul., 17, 420441, https://doi.org/10.1080/14685248.2015.1127379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, A. S., and D. W. Keith, 2007: Wind energy and climate: Modeling the atmospheric impacts of wind energy turbines. Eos, Trans. Amer. Geophys. Union, 88 (Fall Meeting Suppl.), Abstract B44B-08.

  • Adkins, K. A., and A. Sescu, 2017: Observations of relative humidity in the near-wake of a wind turbine using an instrumented unmanned aerial system. Int. J. Green Energy, 14, 845860, https://doi.org/10.1080/15435075.2017.1334661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Wind Energy Association, 2018: Wind energy in Iowa. AWEA, 2 pp., https://www.awea.org/Awea/media/Resources/StateFactSheets/Iowa.pdf.

  • Armstrong, A., S. Waldron, J. Whitaker, and N. J. Ostle, 2014: Wind farm and solar park effects on plant–soil carbon cycling: Uncertain impacts of changes in ground-level microclimate. Global Chang. Biol., 20, 16991706, https://doi.org/10.1111/gcb.12437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armstrong, A., R. R. Burton, S. E. Lee, S. Mobbs, N. Ostle, V. Smith, S. Waldron, and J. Whitaker, 2016: Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation. Environ. Res. Lett., 11, 044024, https://doi.org/10.1088/1748-9326/11/4/044024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badu-Apraku, B., R. B. Hunter, and M. Tollenaar, 1983: Effect of temperature during grain filling on whole plant and grain yield in maize (Zea mays L.). Can. J. Plant Sci., 63, 357363, https://doi.org/10.4141/cjps83-040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., 2011: Simulating impacts of wind farms on local hydrometeorology. J. Wind Eng. Ind. Aerodyn., 99, 491498, https://doi.org/10.1016/j.jweia.2010.12.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., and J. J. Traiteur, 2010: Impacts of wind farms on surface air temperatures. Proc. Natl. Acad. Sci. USA, 107, 17 89917 904, https://doi.org/10.1073/pnas.1000493107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., S. W. Pacala, and R. L. Walko, 2004: Can large wind farms affect local meteorology? J. Geophys. Res., 109, D19101, https://doi.org/10.1029/2004JD004763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., and Coauthors, 2009: Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy, 12, 431444, https://doi.org/10.1002/we.348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodini, N., D. Zardi, and J. K. Lundquist, 2017: Three-dimensional structure of wind turbine wakes as measured by scanning lidar. Atmos. Meas. Tech., 10, 28812896, https://doi.org/10.5194/amt-10-2881-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calaf, M., M. B. Parlange, and C. Meneveau, 2011: Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers. Phys. Fluids, 23, 126603, https://doi.org/10.1063/1.3663376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, G. S., and J. M. Norman, 2000: An Introduction to Environmental Biophysics. 2nd ed. Springer, 286 pp.

  • Cantarero, M. G., A. G. Cirilo, and F. H. Andrade, 1999: Night temperature at silking affects set in maize. Crop Sci., 39, 703710, https://doi.org/10.2135/cropsci1999.0011183X003900020017x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamorro, L. P., and F. Porté-Agel, 2010: Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: A wind-tunnel study. Bound.-Layer Meteor., 136, 515533, https://doi.org/10.1007/s10546-010-9512-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, M. B., and C. B. Hasager, 2005: Wake effects of large offshore wind farms identified from satellite SAR. Remote Sens. Environ., 98, 251268, https://doi.org/10.1016/j.rse.2005.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Counihan, J., 1975: Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880–1972. Atmos. Environ., 9, 871905, https://doi.org/10.1016/0004-6981(75)90088-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörenkämper, M., B. Witha, G. Steinfeld, D. Heinemann, and M. Kühn, 2015: The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms. J. Wind Eng. Ind. Aerodyn., 144, 146153, https://doi.org/10.1016/j.jweia.2014.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutt, N., M. Jeschke, and S. D. Strachan, 2018: High night temperature effects on corn yield. DuPont Pioneer, http://www.pioneer.com/home/site/us/agronomy/library/night-temperature-effects-corn-yield/.

  • El Fajri, O., 2016: Large eddy simulation study of the effect of large wind farms on humidity. M.S. thesis, Dept. of Aerospace Engineering, Mississippi State University, 102 pp., https://search.proquest.com/docview/1857693605?pq-origsite=gscholar.

  • Elmore, R., 2010: Reduced 2010 corn yield forecasts reflect warm temperatures between silking and dent. Integrated Crop Management, Iowa State University, 9 October, https://crops.extension.iastate.edu/cropnews/2010/10/reduced-2010-corn-yield-forecasts-reflect-warm-temperatures-between-silking-and.

  • ESRI, 2016: ArcGIS 10.4.1 for desktop. Environmental Systems Research Institute, https://www.esri.com/en-us/home.

  • Fitch, A. C., 2015: Climate impacts of large-scale wind farms as parameterized in a global climate model. J. Climate, 28, 61606180, https://doi.org/10.1175/JCLI-D-14-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad, 2012: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Wea. Rev., 140, 30173038, https://doi.org/10.1175/MWR-D-11-00352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitch, A. C., J. K. Lundquist, and J. B. Olson, 2013a: Mesoscale influences of wind farms throughout a diurnal cycle. Mon. Wea. Rev., 141, 21732198, https://doi.org/10.1175/MWR-D-12-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitch, A. C., J. B. Olson, and J. K. Lundquist, 2013b: Parameterization of wind farms in climate models. J. Climate, 26, 64396458, https://doi.org/10.1175/JCLI-D-12-00376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frandsen, S. T., 2007: Turbulence and turbulence-generated structural loading in wind turbine clusters. University of Denmark, Risø National Laboratory Rep. R-1188, 135 pp., http://orbit.dtu.dk/fedora/objects/orbit:79899/datastreams/file_269c3f19-0001-4e41-b754-b5b322a826cb/content.

  • Gallant, A. L., W. Sadinski, M. F. Roth, and C. A. Rewa, 2011: Changes in historical Iowa land cover as context for assessing the environmental benefits of current and future conservation efforts on agricultural lands. J. Soil Water Conserv., 66, 67A77A, https://doi.org/10.2489/jswc.66.3.67A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GE Energy, 2009: 1.5 MW wind turbine. GE Energy Publ. GEA14954C, 12 pp., http://geosci.uchicago.edu/~moyer/GEOS24705/Readings/GEA14954C15-MW-Broch.pdf.

  • Gualtieri, G., 2015: Surface turbulence intensity as a predictor of extrapolated wind resource to the turbine hub height. Renewable Energy, 78, 6881, https://doi.org/10.1016/j.renene.2015.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hancock, P. E., and T. D. Farr, 2014: Wind-tunnel simulations of wind-turbine arrays in neutral and non-neutral winds. J. Phys. Conf. Ser., 524, 012166, https://doi.org/10.1088/1742-6596/524/1/012166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hancock, P. E., and S. Zhang, 2015: A wind-tunnel simulation of the wake of a large wind turbine in a weakly unstable boundary layer. Bound.-Layer Meteor., 156, 395413, https://doi.org/10.1007/s10546-015-0037-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, K. S., R. J. Barthelmie, L. E. Jensen, and A. Sommer, 2012: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy, 15, 183196, https://doi.org/10.1002/we.512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, R., L. Zhou, and G. Xia, 2014: Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa. Remote Sens., 6, 12 23412 246, https://doi.org/10.3390/rs61212234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatfield, J., G. Takle, R. Grotjahn, P. Holden, R. C. Izaurralde, T. Mader, E. Marshall, and D. Liverman, 2014: Agriculture. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 150–174, https://doi.org/10.7930/J02Z13FR.

    • Crossref
    • Export Citation
  • Henschen, M. F., and Coauthors, 2011: Do wind turbines affect weather conditions? A case study in Indiana. J. Purdue Undergrad. Res., 1, 2229, https://doi.org/10.5703/jpur.01.1.4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., and J. L. Schroeder, 2013: Documenting wind speed and power deficits behind a utility-scale wind turbine. J. Appl. Meteor. Climatol., 52, 3946, https://doi.org/10.1175/JAMC-D-12-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., D. N. Asimakopoulos, H. Kambezidis, C. G. Helmis, and A. Smedman, 1988: A field study of the wake behind a 2 MW wind turbine. Atmos. Environ., 22, 803820, https://doi.org/10.1016/0004-6981(88)90020-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hui, M. C. H., A. Larsen, and H. F. Xiang, 2009: Wind turbulence characteristics study at the Stonecutters Bridge site: Part I—Mean wind and turbulence intensities. J. Wind Eng. Ind. Aerodyn., 97, 2236, https://doi.org/10.1016/j.jweia.2008.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IEM, 2017: Iowa Environmental Mesonet. Iowa State University, http://mesonet.agron.iastate.edu/projects/iao/.

  • Iungo, G. V., and F. Porté-Agel, 2014: Volumetric scans of wind turbine wakes performed with three simultaneous wind LiDARs under different atmospheric stability regimes. J. Phys. Conf. Ser., 524, 012164, https://doi.org/10.1088/1742-6596/524/1/012164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keck, R.-E., M. de Maré, M. J. Churchfield, S. Lee, G. Larsen, and H. Aagaard Madsen, 2014a: On atmospheric stability in the dynamic wake meandering model. Wind Energy, 17, 16891710, https://doi.org/10.1002/we.1662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keck, R.-E., R. Mikkelsen, N. Troldborg, M. de Maré, and K. S. Hansen, 2014b: Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes. Wind Energy, 17, 12471267, https://doi.org/10.1002/we.1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keith, D. W., J. F. DeCarolis, D. C. Denkenberger, D. H. Lenschow, S. L. Malyshev, S. Pacala, and P. J. Rasch, 2004: The influence of large-scale wind power on global climate. Proc. Natl. Acad. Sci. USA, 101, 16 11516 120, https://doi.org/10.1073/pnas.0406930101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsen, G. C., E. Machefaux, and A. Chougule, 2015: Wake meandering under non-neutral atmospheric stability conditions—Theory and facts. J. Phys. Conf. Ser., 625, 012036, https://doi.org/10.1088/1742-6596/625/1/012036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. C. Y., and J. K. Lundquist, 2017a: Evaluation of the wind farm parameterization in the Weather Research and Forecasting Model (version 3.8.1) with meteorological and turbine power data. Geosci. Model Dev., 10, 42294244, https://doi.org/10.5194/gmd-10-4229-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. C. Y., and J. K. Lundquist, 2017b: Observing and simulating wind-turbine wakes during the evening transition. Bound.-Layer Meteor., 164, 449474, https://doi.org/10.1007/s10546-017-0257-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., and F. Porté-Agel, 2011: Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids, 23, 065101, https://doi.org/10.1063/1.3589857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., and F. Porté-Agel, 2015: On the impact of wind farms on a convective atmospheric boundary layer. Bound.-Layer Meteor., 157, 8196, https://doi.org/10.1007/s10546-015-0049-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. K., and Coauthors, 2014: Lidar observations of interacting wind turbine wakes in an onshore wind farm. Proc. EWEA 2014, Barcelona, Spain, EWEA, 7 pp., https://www.nrgsystems.com/assets/resources/Lidar-observations-of-interacting-wind-turbine-wakes-Whitepaper.pdf.

  • Machefaux, E., G. C. Larsen, T. Koblitz, N. Troldborg, M. C. Kelly, A. Chougule, K. S. Hansen, and J. S. Rodrigo, 2016: An experimental and numerical study of the atmospheric stability impact on wind turbine wakes. Wind Energy, 19, 17851805, https://doi.org/10.1002/we.1950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, M., and A.-S. Smedman, 1999: Air flow behind wind turbines. J. Wind Eng. Ind. Aerodyn., 80, 169189, https://doi.org/10.1016/S0167-6105(98)00126-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaffrey, K., and Coauthors, 2017: Identification of tower-wake distortions using sonic anemometer and lidar measurements. Atmos. Meas. Tech., 10, 393407, https://doi.org/10.5194/amt-10-393-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirocha, J. D., B. Kosovic, M. L. Aitken, and J. K. Lundquist, 2014: Implementation of a generalized actuator disk wind turbine model into the Weather Research and Forecasting Model for large-eddy simulation applications. J. Renewable Sustainable Energy, 6, 013104, https://doi.org/10.1063/1.4861061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, J., J. Lebron, C. Meneveau, and L. Castillo, 2013: Streamwise development of the wind turbine boundary layer over a model wind turbine array. Phys. Fluids, 25, 085108, https://doi.org/10.1063/1.4818451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • New York Times, 1910: Paying $307,000,000 for Iowa drainage. New York Times, 23 September.

  • Odemark, Y., 2012: Wakes behind wind turbines—Studies on tip vortex evolution and stability. Ph.D. dissertation, Stockholm KTH Royal Institute of Technology, 78 pp., http://www.diva-portal.org/smash/record.jsf?pid=diva2:524104.

  • Peters, D. B., J. W. Pendleton, R. H. Hageman, and C. M. Brown, 1971: Effect of night temperature on grain yield of corn, wheat, and soybeans. Agron. J., 63, 809, https://doi.org/10.2134/agronj1971.00021962006300050046x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., Y. T. Wu, H. Lu, and R. J. Conzemius, 2011: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J. Wind Eng. Ind. Aerodyn., 99, 154168, https://doi.org/10.1016/j.jweia.2011.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajewski, D. A., and Coauthors, 2013: Crop Wind Energy Experiment (CWEX): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm. Bull. Amer. Meteor. Soc., 94, 655672, https://doi.org/10.1175/BAMS-D-11-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajewski, D. A., E. S. Takle, J. K. Lundquist, J. H. Prueger, R. L. Pfeiffer, J. L. Hatfield, K. K. Spoth, and R. K. Doorenbos, 2014: Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm. Agric. For. Meteor., 194, 175187, https://doi.org/10.1016/j.agrformet.2014.03.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajewski, D. A., E. S. Takle, J. H. Prueger, and R. K. Doorenbos, 2016: Toward understanding the physical link between turbines and microclimate impacts from in situ measurements in a large wind farm. J. Geophys. Res. Atmos., 121, 13 39213 414, https://doi.org/10.1002/2016JD025297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhodes, M. E., and J. K. Lundquist, 2013: The effect of wind-turbine wakes on summertime US Midwest atmospheric wind profiles as observed with ground-based Doppler lidar. Bound.-Layer Meteor., 149, 85103, https://doi.org/10.1007/s10546-013-9834-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1996: A Short Course in Cloud Physics. Elsevier, 308 pp.

  • Sescu, A., and C. Meneveau, 2015: Large-eddy simulation and single-column modeling of thermally stratified wind turbine arrays for fully developed, stationary atmospheric conditions. J. Atmos. Oceanic Technol., 32, 11441162, https://doi.org/10.1175/JTECH-D-14-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, V., M. B. Parlange, and M. Calaf, 2017: Perturbations to the spatial and temporal characteristics of the diurnally-varying atmospheric boundary layer due to an extensive wind farm. Bound.-Layer Meteor., 162, 255282, https://doi.org/10.1007/s10546-016-0195-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slawsky, L., L. Zhou, S. Baidya Roy, G. Xia, M. Vuille, and R. Harris, 2015: Observed thermal impacts of wind farms over northern Illinois. Sensors, 15, 14 98115 005, https://doi.org/10.3390/s150714981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C. M., R. J. Barthelmie, and S. C. Pryor, 2013: In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles. Environ. Res. Lett., 8, 034006, https://doi.org/10.1088/1748-9326/8/3/034006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

    • Crossref
    • Export Citation
  • Takle, E. S., 2017: Climate. Wildlife and Wind Farms—Conflicts and Solutions. Volume 1: Onshore Potential Effects, M. Perrow, Ed., Pelagic Publishing, p. 298.

  • Takle, E. S., D. A. Rajewski, J. K. Lundquist, W. A. Gallus, and A. Sharma, 2014: Measurements in support of wind farm simulations and power forecasts: The Crop/Wind-energy Experiments (CWEX). J. Phys. Conf. Ser., 524, 012174, https://doi.org/10.1088/1742-6596/524/1/012174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USDA, 2012: Census of agriculture. United States Department of Agriculture, http://www.agcensus.usda.gov/Publications/2012/Online.../County.../Iowa/cp19169.pdf.

  • Vanderwende, B. J., B. Kosović, J. K. Lundquist, and J. D. Mirocha, 2016: Simulating effects of a wind-turbine array using LES and RANS. J. Adv. Model. Earth Syst., 8, 13761390, https://doi.org/10.1002/2016MS000652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., F. Thais, I. Tobin, F.-M. Bréon, J.-G. D. de Lavergne, A. Colette, P. Yiou, and P. M. Ruti, 2014: Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms. Nat. Commun., 5, 3196, https://doi.org/10.1038/ncomms4196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waggy, S. B., S. Biringen, and A. Kucala, 2015: Wake effects on turbulent transport in the convective boundary layer. Geophys. Astrophys. Fluid Dyn., 109, 465479, https://doi.org/10.1080/03091929.2015.1083560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.

  • Wang, C., and R. G. Prinn, 2010: Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys., 10, 20532061, https://doi.org/10.5194/acp-10-2053-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, G., L. Zhou, J. M. Freedman, S. Baidya Roy, R. A. Harris, and M. C. Cervarich, 2016: A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Climate Dyn., 46, 21792196, https://doi.org/10.1007/s00382-015-2696-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and C. L. Archer, 2017: A numerical study of wind-turbine wakes for three atmospheric stability conditions. Bound.-Layer Meteor., 165, 87112, https://doi.org/10.1007/s10546-017-0259-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., C. D. Markfort, and F. Porté-Agel, 2013: Experimental study of the impact of large-scale wind farms on land–atmosphere exchanges. Environ. Res. Lett., 8, 015002, https://doi.org/10.1088/1748-9326/8/1/015002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., Y. Tian, S. Baidya Roy, C. Thorncroft, L. F. Bosart, and Y. Hu, 2012: Impacts of wind farms on land surface temperature. Nat. Climate Change, 2, 539543, https://doi.org/10.1038/nclimate1505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., Y. Tian, S. Baidya Roy, Y. Dai, and H. Chen, 2013a: Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas. Climate Dyn., 41, 307326, https://doi.org/10.1007/s00382-012-1485-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., Y. Tian, H. Chen, Y. Dai, and R. A. Harris, 2013b: Effects of topography on assessing wind farm impacts using MODIS data. Earth Interact., 17, https://doi.org/10.1175/2012EI000510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 662 208 14
PDF Downloads 393 136 11