Automated Satellite-Based Landslide Identification Product for Nepal

Jessica V. Fayne Department of Geography, University of California, Los Angeles, Los Angeles, California

Search for other papers by Jessica V. Fayne in
Current site
Google Scholar
PubMed
Close
,
Aakash Ahamed Department of Geophysics, Stanford University, Stanford, California

Search for other papers by Aakash Ahamed in
Current site
Google Scholar
PubMed
Close
,
Justin Roberts-Pierel Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina

Search for other papers by Justin Roberts-Pierel in
Current site
Google Scholar
PubMed
Close
,
Amanda C. Rumsey Department of Geography, U.S. Census Bureau, Suitland, Maryland

Search for other papers by Amanda C. Rumsey in
Current site
Google Scholar
PubMed
Close
, and
Dalia Kirschbaum Hydrologic Sciences Laboratory, Code 617, NASA Goddard Space Flight Center Greenbelt, Maryland

Search for other papers by Dalia Kirschbaum in
Current site
Google Scholar
PubMed
Close
 Ph.D.
Restricted access

Abstract

Landslide event inventories are a vital resource for landslide susceptibility and forecasting applications. However, landslide inventories can vary in accuracy, availability, and timeliness as a result of varying detection methods, reporting, and data availability. This study presents an approach to use publicly available satellite data and open-source software to automate a landslide detection process called the Sudden Landslide Identification Product (SLIP). SLIP utilizes optical data from the Landsat-8 Operational Land Imager sensor, elevation data from the Shuttle Radar Topography Mission, and precipitation data from the Global Precipitation Measurement mission to create a reproducible and spatially customizable landslide identification product. The SLIP software applies change-detection algorithms to identify areas of new bare-earth exposures that may be landslide events. The study also presents a precipitation monitoring tool that runs alongside SLIP called the Detecting Real-Time Increased Precipitation (DRIP) model that helps to identify the timing of potential landslide events detected by SLIP. Using SLIP and DRIP together, landslide detection is improved by reducing problems related to accuracy, availability, and timeliness that are prevalent in the state of the art for landslide detection. A case study and validation exercise in Nepal were performed for images acquired between 2014 and 2015. Preliminary validation results suggest 56% model accuracy, with errors of commission often resulting from newly cleared agricultural areas. These results suggest that SLIP is an important first attempt in an automated framework that can be used for medium-resolution regional landslide detection, although it requires refinement before being fully realized as an operational tool.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

a Corresponding author: Jessica V. Fayne, jfayne@g.ucla.edu

Abstract

Landslide event inventories are a vital resource for landslide susceptibility and forecasting applications. However, landslide inventories can vary in accuracy, availability, and timeliness as a result of varying detection methods, reporting, and data availability. This study presents an approach to use publicly available satellite data and open-source software to automate a landslide detection process called the Sudden Landslide Identification Product (SLIP). SLIP utilizes optical data from the Landsat-8 Operational Land Imager sensor, elevation data from the Shuttle Radar Topography Mission, and precipitation data from the Global Precipitation Measurement mission to create a reproducible and spatially customizable landslide identification product. The SLIP software applies change-detection algorithms to identify areas of new bare-earth exposures that may be landslide events. The study also presents a precipitation monitoring tool that runs alongside SLIP called the Detecting Real-Time Increased Precipitation (DRIP) model that helps to identify the timing of potential landslide events detected by SLIP. Using SLIP and DRIP together, landslide detection is improved by reducing problems related to accuracy, availability, and timeliness that are prevalent in the state of the art for landslide detection. A case study and validation exercise in Nepal were performed for images acquired between 2014 and 2015. Preliminary validation results suggest 56% model accuracy, with errors of commission often resulting from newly cleared agricultural areas. These results suggest that SLIP is an important first attempt in an automated framework that can be used for medium-resolution regional landslide detection, although it requires refinement before being fully realized as an operational tool.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

a Corresponding author: Jessica V. Fayne, jfayne@g.ucla.edu
Save
  • Behling, R., S. Roessner, D. Golovko, and B. Kleinschmit, 2016: Derivation of long-term spatiotemporal landslide activity—A multi-sensor time series approach. Remote Sens. Environ., 186, 88104, https://doi.org/10.1016/j.rse.2016.07.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brardinoni, F., O. Slaymaker, and M. A. Hassan, 2003: Landslide inventory in a rugged forested watershed: A comparison between air-photo and field survey data. Geomorphology, 54, 179196, https://doi.org/10.1016/S0169-555X(02)00355-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casagli, N., and Coauhtors, 2017: Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron. Disasters, 4, 9, https://doi.org/10.1186/s40677-017-0073-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellanos Abella, E. A., and C. J. van Westen, 2007: Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides, 4, 311325, https://doi.org/10.1007/s10346-007-0087-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, K. S., C. Wei, and S. C. Chang, 2004: Locating landslides using multi-temporal satellite images. Adv. Space Res., 33, 296301, https://doi.org/10.1016/S0273-1177(03)00471-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czuchlewski, K. R., J. K. Weissel, and Y. Kim, 2003: Polarimetric synthetic aperture radar study of the Tsaoling landslide generated by the 1999 Chi-Chi earthquake, Taiwan. J. Geophys. Res., 108, 6006, https://doi.org/10.1029/2003JF000037.

    • Search Google Scholar
    • Export Citation
  • Dahal, R. K., and S. Hasegawa, 2008: Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, 100, 429443, https://doi.org/10.1016/j.geomorph.2008.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farina, P., D. Colombo, A. Fumagalli, F. Marks, and S. Moretti, 2006: Permanent scatterers for landslide investigations: Outcomes from the ESA-SLAM project. Eng. Geol., 88, 200217, https://doi.org/10.1016/j.enggeo.2006.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froehlich, W., and L. Starkel, 1993: The effects of deforestation on slope and channel evolution in the tectonically active Darjeeling Himalaya. Earth Surf. Processes Landforms, 18, 285290, https://doi.org/10.1002/esp.3290180309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froehlich, W., E. Gil, I. Kasza, and L. Starkel, 1990: Thresholds in the transformation of slopes and river channels in the Darjeeling Himalaya, India. Mt. Res. Dev., 10, 301312, https://doi.org/10.2307/3673492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallant, J. C., T. Hengl, I. S. Evans, J. P. Wilson, and M. Gould, 2011: Adaptive smoothing for noisy DEMs. Geomorphometry 2011, Redlands, CA, ESRI, 37–40, http://geomorphometry.org/system/files/Gallant2011geomorphometry.pdf.

  • Gao, B., 1996: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ., 58, 257266, https://doi.org/10.1016/S0034-4257(96)00067-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., and Coauthors, 2012: The design of a community science cloud: The open science data cloud perspective. 2012 SC Companion: High Performance Computing, Networking Storage, and Analysis, Salt Lake City, UT, IEEE, https://doi.org/10.1109/SC.Companion.2012.127.

    • Crossref
    • Export Citation
  • Guzzetti, F., 2000: Landslide fatalities and the evaluation of landslide risk in Italy. Eng. Geol., 58, 89107, https://doi.org/10.1016/S0013-7952(00)00047-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guzzetti, F., A. C. Mondini, M. Cardinali, F. Fiorucci, M. Santangelo, and K. T. Chang, 2012: Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev., 112, 4266, https://doi.org/10.1016/j.earscirev.2012.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagolle, O., V. Nunes, T. Lampada, M. Mitchell, and A. Tzotsos, 2016: LANDSAT data download. Olivier Hagolle, accessed January 2018, https://github.com/olivierhagolle/LANDSAT-Download/blob/master/download_landsat_scene.py.

  • Hashemi, H., M. Nordin, V. Lakshmi, G. J. Huffman, and R. Knight, 2017: Bias correction of long-term satellite monthly precipitation product (TRMM 3B43) over the conterminous United States. J. Hydrometeor., 18, 24912509, https://doi.org/10.1175/JHM-D-17-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hölbling, D., B. Friedl, and C. Eisank, 2015: An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Earth Sci. Inform., 8, 327335, https://doi.org/10.1007/s12145-015-0217-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. J. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). NASA Algorithm Theoretical Basis Doc. Version 4.5, 30 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

  • Jiménez-Perálvarez, J. D., C. Irigaray, R. El Hamdouni, and J. Chacón, 2011: Landslide-susceptibility mapping in a semi-arid mountain environment: An example from the southern slopes of Sierra Nevada (Granada, Spain). Bull. Eng. Geol. Environ., 70, 265277, https://doi.org/10.1007/s10064-010-0332-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., R. Adler, Y. Hong, and A. Lerner-Lam, 2009: Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Nat. Hazards Earth Syst. Sci., 9, 673686, https://doi.org/10.5194/nhess-9-673-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., R. Adler, Y. Hong, S. Hill, and A. Lerner-Lam, 2010: A global landslide catalog for hazard applications: Method, results, and limitations. Nat. Hazards, 52, 561575, https://doi.org/10.1007/s11069-009-9401-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., T. Stanley, and Y. Zhou, 2015: Spatial and temporal analysis of a global landslide catalog. Geomorphology, 249, 415, https://doi.org/10.1016/j.geomorph.2015.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and M.-J. Lee, 2006: Detecting landslide location using KOMPSAT 1 and its application to landslide-susceptibility mapping at the Gangneung area, Korea. Adv. Space Res., 38, 22612271, https://doi.org/10.1016/j.asr.2006.03.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., G. Chen, B. Wang, L. Zheng, Y. Zhang, and C. Tang, 2013: A new approach of combining aerial photography with satellite imagery for landslide detection. Nat. Hazards, 66, 649669, https://doi.org/10.1007/s11069-012-0505-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martha, T. R., N. Kerle, V. Jetten, C. J. van Westen, and K. V. Kumar, 2010: Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology, 116, 2436, https://doi.org/10.1016/j.geomorph.2009.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martha, T. R., P. Kamala, J. Jose, K. V. Kumar, and G. J. Sankar, 2016: Identification of new landslides from high resolution satellite data covering a large area using object-based change detection methods. J. Indian Soc. Remote Sens., 44, 515524, https://doi.org/10.1007/s12524-015-0532-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mondini, A. C., 2017: Measures of spatial autocorrelation changes in multitemporal SAR images for event landslides detection. Remote Sens., 9, 554, https://doi.org/10.3390/rs9060554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA LP DAAC, 2001: AST14DEM: ASTER Digital Elevation Model V003. NASA Land Processes DAAC, accessed July 2018, https://doi.org/10.5067/ASTER/AST14DEM.003.

    • Crossref
    • Export Citation
  • NASA LP DAAC, 2014a: Data pool. NASA Land Processes DAAC, accessed July 2018, https://lpdaac.usgs.gov/data_access/data_pool.

  • NASA LP DAAC, 2014b: Land cover type yearly L3 global 500 m SIN grid: MCD12Q1. NASA Land Processes DAAC, accessed July 2018, https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1.

  • NASA LP DAAC, 2015: Shuttle Radar Topography Mission (SRTM) Void Filled. USGS, accessed July 2018, https://lta.cr.usgs.gov/SRTMVF.

  • NASA LP DAAC, 2016, Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor). USGS, accessed 1 January 2016, https://lta.cr.usgs.gov/L8.

  • Nichol, J., and M. S. Wong, 2005a: Satellite remote sensing for detailed landslide inventories using change detection and image fusion. Int. J. Remote Sens., 26, 19131926, https://doi.org/10.1080/01431160512331314047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nichol, J., and M. S. Wong, 2005b: Detection and interpretation of landslides using satellite images. Land Degrad. Dev., 16, 243255, https://doi.org/10.1002/ldr.648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petley, D. N., 2012: Global patterns of loss of life from landslides. Geology, 40, 927930, https://doi.org/10.1130/G33217.1.

  • Petley, D. N., S. A. Dunning, and N. J. Rosser, 2005: The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. Landslide Risk Management, O. Hungr et al., Eds., Taylor and Francis, 367–374.

  • Petley, D. N., G. J. Hearn, A. Hart, N. J. Rosser, S. A. Dunning, K. Oven, and W. A. Mitchell, 2007: Trends in landslide occurrence in Nepal. Nat. Hazards, 43, 2344, https://doi.org/10.1007/s11069-006-9100-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plank, S., A. Twele, and S. Martinis, 2016: Landslide mapping in vegetated areas using change detection based on optical and polarimetric SAR data. Remote Sens., 8, 307, https://doi.org/10.3390/rs8040307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rib, H. T., and T. Liang, 1978: Recognition and identification. Landslide: Analysis and Control, R. L. Schuster and R. J. Krizek, Eds., TRB Special Rep. 176, 34–80.

    • Search Google Scholar
    • Export Citation
  • Robinson, N., J. Regetz, and R. P. Guralnick, 2014: EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. Remote Sens., 87, 5767, https://doi.org/10.1016/j.isprsjprs.2013.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapir, D. G., and C. Misson, 1992: The development of a database on disasters. Disasters, 16, 7480, https://doi.org/10.1111/j.1467-7717.1992.tb00378.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, W. H., 2004: Landslides mapped using LIDAR imagery, Seattle, Washington. USGS Open-File Rep. 2004-1396, 11 pp., https://doi.org/10.3133/ofr20041396.

    • Crossref
    • Export Citation
  • Singhroy, V., K. E. Mattar, and A. L. Gray, 1998: Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images. Adv. Space Res., 21, 465476, https://doi.org/10.1016/S0273-1177(97)00882-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speight, J. G., 1977: Landform pattern description from aerial photographs. Photogrammetria, 32, 161182, https://doi.org/10.1016/0031-8663(77)90012-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tantianuparp, P., X. Shi, L. Zhang, T. Balz, and M. Liao, 2013: Characterization of landslide deformations in Three Gorges area using multiple InSAR data stacks. Remote Sens., 5, 27042719, https://doi.org/10.3390/rs5062704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and J. Qu, 2007: NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett., 34, L20405, https://doi.org/10.1029/2007GL031021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weirich, F., and L. Blesius, 2007: Comparison of satellite and air photo based landslide susceptibility maps. Geomorphology, 87, 352364, https://doi.org/10.1016/j.geomorph.2006.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, C., X. Xu, and J. B. H. Shyu, 2015: Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013. Geomorphology, 248, 7792, https://doi.org/10.1016/j.geomorph.2015.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., Z. Lu, Q. Zhang, and J. de La Fuente, 2012: Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and southern Oregon, USA. Remote Sens. Environ., 124, 348359, https://doi.org/10.1016/j.rse.2012.05.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2641 621 68
PDF Downloads 2619 620 56