• Barboza, P. S., L. L. Van Someren, D. D. Gustine, and M. S. Bret-Harte, 2018: The nitrogen window for arctic herbivores: Plant phenology and protein gain of migratory caribou (Rangifer tarandus). Ecosphere, 9, e02073, https://doi.org/10.1002/ecs2.2073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, P. S. A., and S. J. Goetz, 2011: Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: Ecological variability and regional differences. Environ. Res. Lett., 6, 045501, https://doi.org/10.1088/1748-9326/6/4/045501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comay, L. B., M. Ratner, and R. E. Crafton, 2018: Arctic National Wildlife Refuge (ANWR): An overview. Congressional Research Service Rep. 7-5700, 26 pp., https://fas.org/sgp/crs/misc/RL33872.pdf.

  • de Jong, R., J. Verbesselt, M. E. Schaepman, and S. de Bruin, 2012: Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Global Change Biol., 18, 642655, https://doi.org/10.1111/j.1365-2486.2011.02578.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denryter, K. A., R. C. Cook, J. G. Cook, and K. L. Parker, 2017: Straight from the caribou’s (Rangifer tarandus) mouth: Detailed observations of tame caribou reveal new insights into summer–autumn diets. Can. J. Zool., 95, 8194, https://doi.org/10.1139/cjz-2016-0114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didan, K., 2016: MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250 m SIN grid V006. NASA EOSDIS LP DAAC, accessed 1 June 2018, https://doi.org/10.5067/MODIS/MOD13Q1.006.

    • Search Google Scholar
    • Export Citation
  • Eidenshink, J., B. Schwind, K. Brewer, Z. Zhu, B. Quayle, and S. Howard, 2007: A project for monitoring trends in burn severity. Fire Ecol., 3, 321, https://doi.org/10.4996/fireecology.0301003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fochesatto, G. J., J. A. Mayfield, D. Starkenburg, M. A. Gruber, and J. Conner, 2015: Occurrence of shallow cold flows in the winter atmospheric boundary layer of interior of Alaska. Meteor. Atmos. Phys., 127, 369382, https://doi.org/10.1007/s00703-013-0274-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forkel, M., N. Carvalhais, J. Verbesselt, M. D. Mahecha, C. S. R. Neigh, and M. Reichstein, 2013: Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens., 5, 21132144, https://doi.org/10.3390/rs5052113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goetz, S. J., A. G. Bunn, G. J. Fiske, and R. A. Houghton, 2005: Satellite observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA, 102, 13 52113 525, https://doi.org/10.1073/pnas.0506179102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustine, D., P. Barboza, L. Adams, B. Griffith, R. Cameron, and K. Whitten, 2017: Advancing the match-mismatch framework for large herbivores in the Arctic: Evaluating the evidence for a trophic mismatch in caribou. PLOS ONE, 12, e0171807, https://doi.org/10.1371/journal.pone.0171807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., and Coauthors, 2005: Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change, 72, 251298, https://doi.org/10.1007/s10584-005-5352-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homer, C. G., and Coauthors, 2015: Completion of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change information. Photogramm. Eng. Remote Sens., 81, 345354.

    • Search Google Scholar
    • Export Citation
  • Huete, A., K. Didan, T. Miura, E. Rodriquez, X. Gao, and L. Ferreira, 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195213, https://doi.org/10.1016/S0034-4257(02)00096-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgenson, J. C., M. Raynolds, J. Reynolds, and A. M. Benson, 2015: Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arct. Antarct. Alp. Res., 47, 785806, https://doi.org/10.1657/AAAR0014-097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgenson, J. C., M. T. Jorgenson, M. L. Boldenow, and K. M. Orndah, 2018: Landscape change detected over a half century in the Arctic National Wildlife Refuge using high-resolution aerial imagery. Remote Sens., 10, 1305, https://doi.org/10.3390/rs10081305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, R., L. Zhou, Y. Knyazikhin, V. Shabanov, R. Myneni, and C. Tucker, 2000: Effect of orbital drift and sensor changes on the time series of AVHRR vegetation index data. IEEE Trans. Geosci. Remote Sens., 38, 25842597, https://doi.org/10.1109/36.885205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loe, L., C. Bonenfant, A. Mysterud, J. Gaillard, R. Langvatn, and F. Klein, 2005: Climate predictability and breeding phenology in red deer: Timing and synchrony of rutting and calving in Norway and France. J. Anim. Ecol., 74, 579588, https://doi.org/10.1111/j.1365-2656.2005.00987.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA LP DAAC, 2007: MODIS/Terra vegetation indices monthly L3 global 0.05deg CMG (MOD13C2), version 005. USGS/Earth Resources Observation and Science Center, accessed June 2018, https://modis.gsfc.nasa.gov/data/dataprod/mod13.php.

  • Nicholson, K. L., S. M. Arthur, J. S. Horne, E. O. Garton, and P. A. Del Vecchio, 2016: Modeling caribou movements: Seasonal ranges and migration routes of the central Arctic herd. PLOS ONE, 11, e0150333, https://doi.org/10.1371/journal.pone.0150333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowacki, G., P. Spencer, T. Brock, M. Fleming, and T. Jorgenson, 2002: Ecoregions of Alaska and Neighboring Territories. U.S. Geological Survey Open File Rep. 02-297, https://databasin.org/datasets/6a792aa584344d3ca98745b201b64223.

  • Pattison, R. R., and J. M. Welker, 2014: Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, northern Alaska. Oecologia, 174, 339350, https://doi.org/10.1007/s00442-013-2777-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pattison, R. R., J. C. Jorgenson, M. K. Raynolds, and J. M. Welker, 2015: Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009. Ecosystems, 18, 707719, https://doi.org/10.1007/s10021-015-9858-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, C. S., 2018: Recovery rates of wetland vegetation greenness in severely burned ecosystems of Alaska derived from satellite image analysis. Remote Sens., 10, 1456, https://doi.org/10.3390/rs10091456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryder, J. L., P. McNeil, J. Hamm, W. A. Nixon, D. Russell, and S. R. Francis, 2007: An integrated assessment of Porcupine caribou seasonal distribution, movements, and habitat preferences for regional land use planning in northern Yukon Territory, Canada. Rangifer, 27, 259270, https://doi.org/10.7557/2.27.4.353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seaber, P. R., F. P. Kapinos, and G. L. Knapp, 1987: Hydrologic unit maps. U.S. Geological Survey Water-Supply Paper 2294, 63 pp., https://pubs.usgs.gov/wsp/wsp2294/pdf/wsp_2294.pdf.

  • Selkowitz, D., and S. Stehman, 2011: Thematic accuracy of the National Land Cover Database (NLCD) 2001 land cover for Alaska. Remote Sens. Environ., 115, 14011407, https://doi.org/10.1016/j.rse.2011.01.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Y., R. S. Lunetta, B. Wheeler, J. S. Iiames, and J. B. Campbell, 2016: An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS NDVI multi-temporal data. Remote Sens. Environ., 174, 258265, https://doi.org/10.1016/j.rse.2015.12.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, I. D., P. A. Wiebe, E. Mallon, A. R. Rodgers, J. M. Fryxell, J. A. Baker, and D. Reid, 2015: Factors influencing the seasonal diet selection by woodland caribou (Rangifer tarandus tarandus) in boreal forests in Ontario. Can. J. Zool., 93, 8798, https://doi.org/10.1139/cjz-2014-0140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USFWS, 2015: Revised comprehensive conservation plan and final environmental impact statement for the Arctic National Wildlife Refuge. Division of Policy and Directives Management, U. S. Fish and Wildlife Service FR Doc. 2015–01341, https://www.fws.gov/home/arctic-ccp/.

  • Verbesselt, J., R. Hyndman, G. Newnham, and D. Culvenor, 2010a: Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ., 114, 106115, https://doi.org/10.1016/j.rse.2009.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbesselt, J., R. Hyndman, A. Zeileis, and D. Culvenor, 2010b: Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ., 114, 29702980, https://doi.org/10.1016/j.rse.2010.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbyla, D., 2008: The greening and browning of Alaska based on 1982–2003 satellite data. Global Ecol. Biogeogr., 17, 547555, https://doi.org/10.1111/j.1466-8238.2008.00396.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeileis, A., F. Leisch, K. Hornik, and C. Kleiber, 2002: strucchange: An R package for testing for structural change in linear regression models. J. Stat. Software, 7 (2), 138, https://doi.org/10.18637/jss.v007.i02.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 505 249 20
PDF Downloads 275 132 10

Changes in Vegetation Cover of the Arctic National Wildlife Refuge Estimated from MODIS Greenness Trends, 2000–18

View More View Less
  • 1 NASA Ames Research Center, Moffett Field, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Trends and transitions in the growing-season normalized difference vegetation index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor at 250-m resolution were analyzed for the period from 2000 to 2018 to understand recent patterns of vegetation change in ecosystems of the Arctic National Wildlife Refuge (ANWR) in Alaska. Statistical analysis of changes in the NDVI time series was conducted using the breaks for additive seasonal and trend method (BFAST). This structural change analysis indicated that NDVI breakpoints and negative 18-yr trends in vegetation greenness over the years since 2000 could be explained in large part by the impacts of severe wildfires. At least one NDVI breakpoint was detected in around 20% of the MODIS pixels within both the Porcupine River and Coleen River basins of the study area. The vast majority of vegetation cover in the ANWR Brooks Range and coastal plain ecoregions was detected with no (positive or negative) growing-season NDVI trends since the year 2000. Results suggested that most negative NDVI anomalies in the 18-yr MODIS record have been associated with early spring thawing and elevated levels of surface moisture in low-elevation drainages of the northern ANWR ecoregions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

a Corresponding author: Christopher Potter, chris.potter@nasa.gov

Abstract

Trends and transitions in the growing-season normalized difference vegetation index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor at 250-m resolution were analyzed for the period from 2000 to 2018 to understand recent patterns of vegetation change in ecosystems of the Arctic National Wildlife Refuge (ANWR) in Alaska. Statistical analysis of changes in the NDVI time series was conducted using the breaks for additive seasonal and trend method (BFAST). This structural change analysis indicated that NDVI breakpoints and negative 18-yr trends in vegetation greenness over the years since 2000 could be explained in large part by the impacts of severe wildfires. At least one NDVI breakpoint was detected in around 20% of the MODIS pixels within both the Porcupine River and Coleen River basins of the study area. The vast majority of vegetation cover in the ANWR Brooks Range and coastal plain ecoregions was detected with no (positive or negative) growing-season NDVI trends since the year 2000. Results suggested that most negative NDVI anomalies in the 18-yr MODIS record have been associated with early spring thawing and elevated levels of surface moisture in low-elevation drainages of the northern ANWR ecoregions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

a Corresponding author: Christopher Potter, chris.potter@nasa.gov
Save