Woody Plant Cover Estimation in Texas Savanna from MODIS Products

Xuebin Yang Department of Plant Pathology, Kansas State University, Manhattan, Kansas

Search for other papers by Xuebin Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Woody plant cover, the area of the vertical projection of woody plants (trees, shrubs, and bushes), plays an important role in the structure and function of savanna ecosystems and is needed by the savanna modeling community. Recent problems facing savanna ecosystems such as woody plant encroachment and subsequent habitat fragmentation further underscore the relevance of regional-scale and even larger-scale woody plant cover mapping. The mixture of woody plants and herbaceous vegetation in savanna landscapes lends woody plant cover mapping to fractional representation. This study endeavors to develop a simple and reliable approach for fractional woody plant cover mapping in savanna ecosystems. It was tested in the savanna of central Texas, which features a wide woody plant density gradation. A multiple linear regression model was calibrated between orthophoto-based fractional woody plant cover and metrics derived from time series MODIS products of surface reflectance (MOD09A1) and fraction of photosynthetically active radiation (MOD15A2H). By applying this model, woody plant cover was extrapolated to Texas savanna at MODIS scale (500 m). Validation suggests a mean absolute error of 0.098 and an R-squared value of 0.60. This study demonstrates a potential approach for woody plant cover mapping in other savanna ecosystems of the world. It also highlights the utility of time series MODIS products in savanna woody plant cover estimation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

a Corresponding author: Xuebin Yang, xuebiny@ksu.edu

Abstract

Woody plant cover, the area of the vertical projection of woody plants (trees, shrubs, and bushes), plays an important role in the structure and function of savanna ecosystems and is needed by the savanna modeling community. Recent problems facing savanna ecosystems such as woody plant encroachment and subsequent habitat fragmentation further underscore the relevance of regional-scale and even larger-scale woody plant cover mapping. The mixture of woody plants and herbaceous vegetation in savanna landscapes lends woody plant cover mapping to fractional representation. This study endeavors to develop a simple and reliable approach for fractional woody plant cover mapping in savanna ecosystems. It was tested in the savanna of central Texas, which features a wide woody plant density gradation. A multiple linear regression model was calibrated between orthophoto-based fractional woody plant cover and metrics derived from time series MODIS products of surface reflectance (MOD09A1) and fraction of photosynthetically active radiation (MOD15A2H). By applying this model, woody plant cover was extrapolated to Texas savanna at MODIS scale (500 m). Validation suggests a mean absolute error of 0.098 and an R-squared value of 0.60. This study demonstrates a potential approach for woody plant cover mapping in other savanna ecosystems of the world. It also highlights the utility of time series MODIS products in savanna woody plant cover estimation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

a Corresponding author: Xuebin Yang, xuebiny@ksu.edu
Save
  • Alofs, K. M., and N. L. Fowler, 2010: Habitat fragmentation caused by woody plant encroachment inhibits the spread of an invasive grass. J. Appl. Ecol., 47, 338347, https://doi.org/10.1111/j.1365-2664.2010.01785.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alofs, K. M., and N. L. Fowler, 2013: Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass. Ecology, 94, 751760, https://doi.org/10.1890/12-0732.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anadón, J. D., O. E. Sala, B. L. Turner, and E. M. Bennett, 2014: Effect of woody-plant encroachment on livestock production in North and South America. Proc. Natl. Acad. Sci. USA, 111, 12 94812 953, https://doi.org/10.1073/pnas.1320585111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansley, R. J., X. Ben Wu, and B. A. Kramp, 2001: Observation: Long-term increases in mesquite canopy cover in a north Texas savanna. J. Range Manage., 54, 171176, https://doi.org/10.2307/4003179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appel, D. N., 1995: The oak wilt enigma: Perspectives from the Texas epidemic. Annu. Rev. Phytopathol., 33, 103118, https://doi.org/10.1146/annurev.py.33.090195.000535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, S., 1989: Have southern Texas savannas been converted to woodlands in recent history? Amer. Nat., 134, 545561, https://doi.org/10.1086/284996.

  • Archer, S., 1990: Development and stability of grass/woody mosaics in a subtropical savanna parkland, Texas, USA. J. Biogeogr., 17, 453462, https://doi.org/10.2307/2845377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archibald, S., C. E. Lehmann, J. L. Gómez-Dans, and R. A. Bradstock, 2013: Defining pyromes and global syndromes of fire regimes. Proc. Natl. Acad. Sci. USA, 110, 64426447, https://doi.org/10.1073/pnas.1211466110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asner, G. P., S. Archer, R. F. Hughes, R. J. Ansley, and C. A. Wessman, 2003: Net changes in regional woody vegetation cover and carbon storage in Texas drylands, 1937–1999. Global Change Biol., 9, 316335, https://doi.org/10.1046/j.1365-2486.2003.00594.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basant, S., and B. P. Wilcox, 2017: Landscape evolution in south Texas savannas: Impact of woody encroachment on land-surface hydrology. 2017 Fall Meeting, New Orleans, LA, Amer. Geophys. Union, Abstract B51G-0280.

  • Brandt, M., and Coauthors, 2016: Woody plant cover estimation in drylands from Earth observation based seasonal metrics. Remote Sens. Environ., 172, 2838, https://doi.org/10.1016/j.rse.2015.10.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bucini, G., and N. P. Hanan, 2007: A continental-scale analysis of tree cover in African savannas. Global Ecol. Biogeogr., 16, 593605, https://doi.org/10.1111/j.1466-8238.2007.00325.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creamer, C. A., T. R. Filley, D. C. Olk, D. E. Stott, V. Dooling, and T. W. Boutton, 2013: Changes to soil organic N dynamics with leguminous woody plant encroachment into grasslands. Biogeochemistry, 113, 307321, https://doi.org/10.1007/s10533-012-9757-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFries, R. S., and Coauthors, 1995: Mapping the land surface for global atmosphere-biosphere models: Toward continuous distributions of vegetation’s functional properties. J. Geophys. Res., 100, 20 86720 882, https://doi.org/10.1029/95JD01536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFries, R. S., M. C. Hansen, J. R. Townshend, A. C. Janetos, and T. R. Loveland, 2000: A new global 1-km dataset of percentage tree cover derived from remote sensing. Global Change Biol., 6, 247254, https://doi.org/10.1046/j.1365-2486.2000.00296.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiMiceli, C. M., M. L. Carroll, R. A. Sohlberg, C. Huang, M. C. Hansen, and J. R. G. Townshend, 2017: Annual global automated MODIS vegetation continuous fields (MOD44B) at 250 m spatial resolution for data years beginning day 65, 2000–2010. NASA EOSDIS Land Processes DAAC, accessed 16 October 2018, https://doi.org/10.5067/MODIS/MOD44B.006.

    • Crossref
    • Export Citation
  • Donohue, R. J., M. L. Roderick, T. R. McVicar, and G. D. Farquhar, 2013: Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett., 40, 30313035, https://doi.org/10.1002/grl.50563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foody, G. M., A. Mathur, C. Sanchez-Hernandez, and D. S. Boyd, 2006: Training set size requirements for the classification of a specific class. Remote Sens. Environ., 104, 114, https://doi.org/10.1016/j.rse.2006.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, N. L., and M. T. Simmons, 2009: Savanna dynamics in central Texas: Just succession? Appl. Veg. Sci., 12, 2331, https://doi.org/10.1111/j.1654-109X.2009.01015.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González, A. V., 2010: Dynamics of woody plant encroachment in Texas savannas: density dependence, environmental heterogeneity, and spatial patterns. Ph.D. dissertation, The University of Texas at Austin, 171 pp

  • González-Roglich, M., and J. J. Swenson, 2016: Tree cover and carbon mapping of Argentine savannas: Scaling from field to region. Remote Sens. Environ., 172, 139147, https://doi.org/10.1016/j.rse.2015.11.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanan, N., and C. Lehmann, 2010: Tree–grass interactions in savannas: Paradigms, contradictions, and conceptual models. Ecosystem Function in Savannas: Measurement and Modeling at Landscape to Global Scales, M. J. Hill and N. P. Hanan, Eds., Taylor and Francis, 39–53.

    • Crossref
    • Export Citation
  • Hanan, N. P., A. T. Tredennick, L. Prihodko, G. Bucini, and J. Dohn, 2014: Analysis of stable states in global savannas: Is the CART pulling the horse? Global Ecol. Biogeogr., 23, 259263, https://doi.org/10.1111/geb.12122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, R. Sohlberg, C. Dimiceli, and M. Carroll, 2002: Towards an operational MODIS continuous field of percent tree cover algorithm: Examples using AVHRR and MODIS data. Remote Sens. Environ., 83, 303319, https://doi.org/10.1016/S0034-4257(02)00079-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, M. Carroll, C. Dimiceli, and R. A. Sohlberg, 2003: Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interact., 7, https://doi.org/10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., A. Egorov, D. P. Roy, P. Potapov, J. Ju, S. Turubanova, I. Kommareddy, and T. R. Loveland, 2011: Continuous fields of land cover for the conterminous United States using Landsat data: First results from the Web-Enabled Landsat Data (WELD) project. Remote Sens. Lett., 2, 279288, https://doi.org/10.1080/01431161.2010.519002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., and Coauthors, 2013: High-resolution global maps of 21st-century forest cover change. Science, 342, 850853, https://doi.org/10.1111/geb.12449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudak, A. T., and C. A. Wessman, 1998: Textural analysis of historical aerial photography to characterize woody plant encroachment in South African savanna. Remote Sens. Environ., 66, 317330, https://doi.org/10.1016/S0034-4257(98)00078-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, R. F., S. R. Archer, G. P. Asner, C. A. Wessman, C. McMurtry, J. I. M. Nelson, and R. J. Ansley, 2006: Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna. Global Change Biol., 12, 17331747, https://doi.org/10.1111/j.1365-2486.2006.01210.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, T., J. Tsend-Ayush, and R. Tateishi, 2016: A new global tree-cover percentage map using MODIS data. Int. J. Remote Sens., 37, 969992, https://doi.org/10.1080/01431161.2016.1142684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krofcheck, D. J., M. E. Litvak, C. D. Lippitt, and A. Neuenschwander, 2016: Woody biomass estimation in a southwestern US juniper savanna using lidar-derived clumped tree segmentation and existing allometries. Remote Sens., 8, 453, https://doi.org/10.3390/rs8060453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamprey, R. H., and R. S. Reid, 2004: Expansion of human settlement in Kenya’s Maasai Mara: What future for pastoralism and wildlife? J. Biogeogr., 31, 9971032, https://doi.org/10.1111/j.1365-2699.2004.01062.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lefsky, M. A., 2010: A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys. Res. Lett., 37, L15401, https://doi.org/10.1029/2010GL043622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, R. K., M. K. Owens, and R. V. Machen, 2009: Juniper biology and management in Texas. Texas FARMER Collection, AgriLife Communications, Texas A&M University, 12 pp.

  • Montesano, P. M., R. Nelson, G. Sun, H. Margolis, A. Kerber, and K. J. Ranson, 2009: MODIS tree cover validation for the circumpolar taiga–tundra transition zone. Remote Sens. Environ., 113, 21302141, https://doi.org/10.1016/j.rse.2009.05.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myneni, R., Y. Knyazikhin, and T. Park, 2015: MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500 m SIN Grid V006. NASA EOSDIS Land Processes DAAC, accessed 16 October 2018, https://doi.org/10.5067/MODIS/MOD15A2H.006.

    • Crossref
    • Export Citation
  • Osborn, J. E., and G. V. Witkowski, 1974: Economic impact of brush encroachment in Texas. J. Agric. Appl. Econ., 6, 95100, https://doi.org/10.1017/S0081305200011948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piñeiro, G., S. Perelman, J. P. Guerschman, and J. M. Paruelo, 2008: How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecol. Modell., 216, 316322, https://doi.org/10.1016/j.ecolmodel.2008.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prior, L. D., R. J. Williams, and D. M. Bowman, 2010: Experimental evidence that fire causes a tree recruitment bottleneck in an Australian tropical savanna. J. Trop. Ecol., 26, 595603, https://doi.org/10.1017/S0266467410000362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratajczak, Z., J. B. Nippert, and S. L. Collins, 2012: Woody encroachment decreases diversity across North American grasslands and savannas. Ecology, 93, 697703, https://doi.org/10.1890/11-1199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sankaran, M., and Coauthors, 2005: Determinants of woody cover in African savannas. Nature, 438, 846849, https://doi.org/10.1038/nature04070.

  • Sankaran, M., J. Ratnam, and N. Hanan, 2008: Woody cover in African savannas: The role of resources, fire and herbivory. Global Ecol. Biogeogr., 17, 236245, https://doi.org/10.1111/j.1466-8238.2007.00360.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, J. A., 1969: The Wild Landscape of the Edwards Plateau of South Central Texas: A Study of Developing Livelihood Patterns and Ecological Change. University of Chicago, 288 pp.

  • Schwarz, M., and N. E. Zimmermann, 2005: A new GLM-based method for mapping tree cover continuous fields using regional MODIS reflectance data. Remote Sens. Environ., 95, 428443, https://doi.org/10.1016/j.rse.2004.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sexton, J. O., and Coauthors, 2013: Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth, 6, 427448, https://doi.org/10.1080/17538947.2013.786146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, N., C. E. Lehmann, B. P. Murphy, and G. Durigan, 2017: Savanna woody encroachment is widespread across three continents. Global Change Biol., 23, 235244, https://doi.org/10.1111/gcb.13409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Townshend, J. R. G., C. O. Justice, D. Skole, J.-P. Malingreau, J. Cihlar, P. Teillet, F. Sadowski, and S. Ruttenberg, 1994: The 1 km resolution global data set: Needs of the International Geosphere Biosphere Programme. Int. J. Remote Sens., 15, 34173441, https://doi.org/10.1080/01431169408954338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. P., and Coauthors, 2006: Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ., 102, 282292, https://doi.org/10.1016/j.rse.2006.02.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urbazaev, M., C. Thiel, R. Mathieu, L. Naidoo, S. R. Levick, I. P. Smit, G. P. Asner, and C. Schmullius, 2015: Assessment of the mapping of fractional woody cover in southern African savannas using multi-temporal and polarimetric ALOS PALSAR L-band images. Remote Sens. Environ., 166, 138153, https://doi.org/10.1016/j.rse.2015.06.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Auken, O. W., 2009: Causes and consequences of woody plant encroachment into western North American grasslands. J. Environ. Manage., 90, 29312942, https://doi.org/10.1016/j.jenvman.2009.04.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vermote, E., 2015: MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC, accessed 16 October 2018, https://doi.org/10.5067/MODIS/MOD09A1.006.

    • Crossref
    • Export Citation
  • Vintrou, E., A. Bégué, C. Baron, A. Saad, D. Lo Seen, and S. B. Traoré, 2014: A comparative study on satellite-and model-based crop phenology in West Africa. Remote Sens., 6, 13671389, https://doi.org/10.3390/rs6021367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., H. Xie, T. Liang, and X. Huang, 2009: Comparison and validation of MODIS standard and new combination of Terra and Aqua snow cover products in northern Xinjiang, China. Hydrol. Processes, 23, 419429, https://doi.org/10.1002/hyp.7151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, M. A., J. D. Shaw, and R. D. Ramsey, 2005: Accuracy assessment of the vegetation continuous field tree cover product using 3954 ground plots in the south-western USA. Int. J. Remote Sens., 26, 26992704, https://doi.org/10.1080/01431160500080626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and K. Crews, 2019a: Applicability analysis of MODIS tree cover product in Texas savanna. Int. J. Appl. Earth Obs. Geoinf., 81, 186194, https://doi.org/10.1016/j.jag.2019.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and K. Crews, 2019b: Fractional woody cover mapping of Texas savanna at Landsat scale. Land, 8, 9, https://doi.org/10.3390/land8010009.

  • Yang, X., K. A. Crews, and B. Yan, 2016: Analysis of the pattern of potential woody cover in Texas savanna. Int. J. Appl. Earth Obs. Geoinf., 52, 527531, https://doi.org/10.1016/j.jag.2016.07.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., B. D. Wardlow, T. Tadesse, J. Shan, M. J. Hayes, D. Li, and D. Xiang, 2015: Estimation of daily air temperature based on MODIS land surface temperature products over the corn belt in the US. Remote Sens., 7, 951970, https://doi.org/10.3390/rs70100951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., T. W. Boutton, and X. B. Wu, 2018: Woody plant encroachment amplifies spatial heterogeneity of soil phosphorus to considerable depth. Ecology, 99, 136147, https://doi.org/10.1002/ecy.2051.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2267 1787 92
PDF Downloads 510 101 8