• Abdullaev, S. M., O. Y. Lenskaya, and I. V. Gracheva, 2010: Classification and assessment of landscapes condition in the zone of influence of the projected South Ural nuclear electric powerstation (in Russian). Bull. Voronezh State Univ., 2, 6065.

    • Search Google Scholar
    • Export Citation
  • Alhumaima, A. S., and S. M. Abdullaev, 2018: Preliminary assessment of hydrothermal risks in the Euphrates–Tigris basin: Droughts in Iraq. Bull. South Ural State Univ., 7, 4158, https://doi.org/10.14529/cmse180403.

    • Search Google Scholar
    • Export Citation
  • Alhumaima, A. S., and S. M. Abdullaev, 2019: Landscape approach to normalized difference vegetation index forecast by artificial neural network: Example of Diyala River basin. Bull. South Ural State Univ., 19, 519, https://doi.org/10.14529/ctcr190301.

    • Search Google Scholar
    • Export Citation
  • Baker, B., H. Diaz, W. Hargrove, and F. Hoffman, 2010: Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China. Climatic Change, 98, 113131, https://doi.org/10.1007/s10584-009-9622-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, X., and F. Zhang, 2019: How accurate are modern atmospheric reanalyses for the data-sparse Tibetan Plateau region? J. Climate, 32, 71537172, https://doi.org/10.1175/JCLI-D-18-0705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belda, M., E. Holtanová, T. Halenka, and J. Kalvová, 2014: Climate classification revisited: From Köppen to Trewartha. Climate Res., 59, 113, https://doi.org/10.3354/cr01204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blunden, J., and D. S. Arndt, 2019: A look at 2018: Takeaway points from the State of the Climate supplement. Bull. Amer. Meteor. Soc., 100, 16251636, https://doi.org/10.1175/BAMS-D-19-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Central Statistical Organization, 2016: Annual statistical abstract for the years (2000–2016). Republic of Iraq Ministry of Planning, accessed 13 March 2019, http://cosit.gov.iq/en.

  • Cullen, H. M., A. Kaplan, P. A. Arkin, and P. B. deMenocal, 2002: Impact of the North Atlantic Oscillation on Middle Eastern climate and streamflow. Climatic Change, 55, 315338, https://doi.org/10.1023/A:1020518305517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. V., and G. M. Binnie, 1959: Hydrological Survey of Iraq: Summary of Monthly Precipitation at Stations in Iraq, 1887–1958. Republic of Iraq Developing Board, 62 pp., ftp://ftp.library.noaa.gov/docs.lib/htdocs/rescue/cd024_pdf/005D836E.pdf.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didan, K., 2015: MOD13Q1 MODIS/Terra vegetation indices 16-Day L3 Global 250 m SIN Grid, version 006. NASA EOSDIS Land Processes DAAC. Subset used: March and April Months, 2000 to 2016, accessed 25 March 2019, https://lpdaac.usgs.gov/products/mod13q1v006.

  • Essou, G. R. C., F. Sabarly, P. Lucas-Picher, F. Brissette, and A. Poulin, 2016: Can precipitation and temperature from meteorological reanalyses be used for hydrological modeling? J. Hydrometeor., 17, 19291950, https://doi.org/10.1175/JHM-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez, J. P. R., S. H. Franchito, V. B. Rao, and M. Llopart, 2017: Changes in Koppen–Trewartha climate classification over South America from RegCM4 projections. Atmos. Sci. Lett., 18, 427434, https://doi.org/10.1002/asl.785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghazanfar, S. A., and T. McDaniel, 2016: Floras of the Middle East: A quantitative analysis and biogeography of the flora of Iraq. Edinburgh J. Bot., 73, 124, https://doi.org/10.1017/S0960428615000244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS4.01 Dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoegh-Guldberg, O., and Coauthors, 2018: Impacts of 1.5°C global warming on natural and human systems. Global Warming of 1.5°C, V. Masson-Delmotte et al., Eds., World Meteorological Organization, 175–311, https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter3_Low_Res.pdf.

  • Isaev, V. A., and M. V. Mikhailova, 2009: The hydrography, evolution, and hydrological regime of the mouth area of the Shatt al-Arab River. Water Resour., 36, 380395, https://doi.org/10.1134/S0097807809040022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jamali, S., J. Seaquist, L. Eklundh, and J. Ardö, 2014: Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sens. Environ., 141, 7989, https://doi.org/10.1016/j.rse.2013.10.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karabörk, M. Ç., and E. Kahya, 2009: The links between the categorised Southern Oscillation indicators and climate and hydrologic variables in Turkey. Hydrol. Processes, 23, 19271936, https://doi.org/10.1002/hyp.7331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, C. P., S. Mohtadi, M. A. Cane, R. Seager, and Y. Kushnir, 2015: Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl. Acad. Sci. USA, 112, 32413246, https://doi.org/10.1073/pnas.1421533112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khalil, Z. H., and S. M. Abdullaev, 2018: Diagnosis of landscapes of the province of Al-Diwaniyah (Iraq) by using of Landsat-8 multispectral images. Vestn. YuUrGU., 7, 518, https://doi.org/10.14529/cmse180301.

    • Search Google Scholar
    • Export Citation
  • Khalil, Z. H., and S. M. Abdullaev, 2020: Sensitivity of winter crops to climate variability in the irrigated subtropics of Iraq (Al-Diwaniyah). Procedia Comput. Sci., 167, 10661079, https://doi.org/10.1016/j.procs.2020.03.405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, V., L. Holko, K. Rubinstein, and M. Breiling, 2008: Snow cover characteristics over the main Russian River basins as represented by reanalyses and measured data. J. Appl. Meteor. Climatol., 47, 18191833, https://doi.org/10.1175/2007JAMC1626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latham, J., R. Cumani, I. Rosati, and M. Bloise, 2014: FAO Global Land Cover SHARE (GLC-SHARE) database beta-release, version 1.0. Land and Water Division, FAO, accessed 17 February 2019, http://www.fao.org/uploads/media/glc-share-doc.pdf.

  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, https://doi.org/10.1175/JHM-D-11-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathbout, S., J. A. Lopez-Bustins, J. Martin-Vide, J. Bech, and F. S. Rodrigo, 2018: Spatial and temporal analysis of drought variability at several time scales in Syria during 1961–2012. Atmos. Res., 200, 153168, https://doi.org/10.1016/j.atmosres.2017.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazid, A., 2015: Status of wheat production in Kurdistan region of Iraq: Results of baseline survey. Japan International Cooperation Agency (JICA) and International Center for Agricultural Research in Dry Area (ICARDA), accessed 15 March 2019, https://doi.org/10.13140/RG.2.1.1107.3122.

    • Crossref
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Proc. Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • Ministry of Economy, Trade, and Industry/NASA, 2011: ASTER global digital elevation model, version 2. NASA EOSDIS Land Processes DAAC, accessed 15 February 2019, https://asterweb.jpl.nasa.gov/gdem.asp.

  • Muhaimeed, A. S., and S. M. Al-Hedny, 2013: Evaluation of long-term vegetation trends for northeastern of Iraq: Mosul, Kirkuk and Salah al-Din. IOSR J. Agric. Vet. Sci., 5, 6776, https://doi.org/10.9790/2380-0526776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolayev, V. A., 2006: Landscape Studies: Seminars and Practical Exercises (in Russian). 2nd ed. Moscow State University Press, 208 pp.

  • Nkiaka, E., N. Nawaz, and J. Lovett, 2017: Evaluating global reanalysis datasets as input for hydrological modelling in the Sudano-Sahel region. Hydrology, 4, 13, https://doi.org/10.3390/hydrology4010013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2019a: El Niño–Southern Oscillation (ENSO). NOAA Climate Prediction Center (CPC). Subset used: January 1980 to December 2016, accessed 14 October 2019, https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.

  • NOAA, 2019b: Atlantic multidecadal oscillation (AMO). NOAA Earth System Research Laboratory (ESRL). Subset used: January 1980 to December 2016, accessed 18 October 2019, https://www.esrl.noaa.gov/psd/data/correlation/amon.us.long.data.

  • NOAA, 2019c: North Atlantic Oscillation (NAO). NOAA National Centers for Environmental Information (NCEI). Subset used: January 1980 to December 2016, accessed 21 October 2019, https://www.ncdc.noaa.gov/teleconnections/nao.

  • NOAA, 2019d: Dipole mode index (DMI). NOAA Earth System Research Laboratory (ESRL). Subset used: January 1980 to December 2016, accessed 30 October 2019, https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/dmi.long.data.

  • Olson, D. M., and Coauthors, 2001: Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 51, 933938, https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and C. J. W. Bonfils, 2015: Köppen bioclimatic evaluation of CMIP historical climate simulations. Environ. Res. Lett., 10, 064005, https://doi.org/10.1088/1748-9326/10/6/064005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pourasghar, F., E. C. J. Oliver, and N. J. Holbrook, 2019: Modulation of wet season rainfall over Iran by the Madden–Julian oscillation, Indian Ocean dipole and El Niño–Southern Oscillation. Int. J. Climatol., 39, 40294040, https://doi.org/10.1002/joc.6057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., C. S. Draper, Q. Liu, M. Girotto, S. P. P. Mahanama, R. D. Koster, and G. J. M. De Lannoy, 2017: Assessment of MERRA-2 land surface hydrology estimates. J. Climate, 30, 29372960, https://doi.org/10.1175/JCLI-D-16-0720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seddon, A. W. R., M. Macias-Fauria, P. R. Long, D. Benz, and K. J. Willis, 2016: Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531, 229232, https://doi.org/10.1038/nature16986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UN-ESCWA, and BGR, 2013: Inventory of shared water resources in Western Asia. United Nations Economic and Social Commission for Western Asia, Bundesanstalt für Geowissenschaften und Rohstoffe, accessed 17 January 2019, https://doi.org/10.18356/48e4072c-en.

    • Crossref
    • Export Citation
  • Wartenburger, R., M. Hirschi, M. G. Donat, P. Greve, A. J. Pitman, and S. I. Seneviratne, 2017: Changes in regional climate extremes as a function of global mean temperature: An interactive plotting framework. Geosci. Model Dev., 10, 36093634, https://doi.org/10.5194/gmd-10-3609-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegmann, M., Y. Orsolini, E. Dutra, O. Bulygina, A. Sterin, and S. Brönnimann, 2017: Eurasian snow depth in long-term climate reanalyses. Cryosphere, 11, 923935, https://doi.org/10.5194/tc-11-923-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 2019: Terrestrial air temperature and precipitation: Monthly and annual time series (1900-2017), version 5.01. Department of Geography, University of Delaware. Subset used: January 1980 to December 2016, accessed 25 March 2019, http://climate.geog.udel.edu/~climate.

  • WMO, 2010: Global aspects. Vol. I, Manual on the Global Data-Processing and Forecasting System, WMO Doc. WMO-485, 193 pp., https://www.wmo.int/pages/prog/www/DPFS/documents/485_Vol_I_en.pdf.

  • Zhao, C., and Coauthors, 2017: Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA, 114, 93269331, https://doi.org/10.1073/pnas.1701762114.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2 2 0
Full Text Views 150 150 93
PDF Downloads 160 160 93

Tigris Basin Landscapes: Sensitivity of Vegetation Index NDVI to Climate Variability Derived from Observational and Reanalysis Data

View More View Less
  • 1 South Ural State University, Chelyabinsk, Russia
© Get Permissions
Restricted access

Abstract

The primary aim of this work is to study the response of the normalized difference vegetation index (NDVI) of landscapes in the lower Tigris basin to current global and regional climate variability presented, respectively, by the global circulation indices and monthly temperatures and precipitation extracted from five observational/reanalysis datasets. The second task is to find the dataset that best reflects the regional vegetation and climate conditions. Comparison of the Köppen–Trewartha bioclimatic landscapes with the positions of botanical districts, land-cover types, and streamflow estimates led to the conclusion that only two datasets correctly describe regional climatic zones. Therefore, searching for the NDVI response to regional climate variability requires the use of normalized analogs of temperatures and precipitations, as well as the Spearman rank correlation. We found that March/April NDVI, as proxies of the maximum biological productivity of the regional landscapes, are strongly correlated with October–March precipitation derived from three datasets and January–March temperatures derived from one dataset. We discovered the significant impact of autumn–winter El Niño–Southern Oscillation and winter Indian Oceanic dipole states on regional weather (e.g., all five recent severe droughts occurred during strong La Niña events). However, the strength of this impact on the vegetation was clearly linked to the zonal landscape type. By selecting pairs of the temperature/precipitation time series that best correlated with NDVI at a given landscape, we have built a synthetic climate dataset. The landscape approach presented in this work can be used to validate the viability of any dataset when assessing the impacts of climate change and variability on weather-dependent components of Earth’s surface.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. S. Alhumaima, engineer_alisubhi@yahoo.com

Abstract

The primary aim of this work is to study the response of the normalized difference vegetation index (NDVI) of landscapes in the lower Tigris basin to current global and regional climate variability presented, respectively, by the global circulation indices and monthly temperatures and precipitation extracted from five observational/reanalysis datasets. The second task is to find the dataset that best reflects the regional vegetation and climate conditions. Comparison of the Köppen–Trewartha bioclimatic landscapes with the positions of botanical districts, land-cover types, and streamflow estimates led to the conclusion that only two datasets correctly describe regional climatic zones. Therefore, searching for the NDVI response to regional climate variability requires the use of normalized analogs of temperatures and precipitations, as well as the Spearman rank correlation. We found that March/April NDVI, as proxies of the maximum biological productivity of the regional landscapes, are strongly correlated with October–March precipitation derived from three datasets and January–March temperatures derived from one dataset. We discovered the significant impact of autumn–winter El Niño–Southern Oscillation and winter Indian Oceanic dipole states on regional weather (e.g., all five recent severe droughts occurred during strong La Niña events). However, the strength of this impact on the vegetation was clearly linked to the zonal landscape type. By selecting pairs of the temperature/precipitation time series that best correlated with NDVI at a given landscape, we have built a synthetic climate dataset. The landscape approach presented in this work can be used to validate the viability of any dataset when assessing the impacts of climate change and variability on weather-dependent components of Earth’s surface.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. S. Alhumaima, engineer_alisubhi@yahoo.com
Save