• Acker, J. G., and G. Leptoukh, 2007: Online analysis enhances use of NASA Earth science data. Eos, Trans. Amer. Geophys. Union, 88, 1417, https://doi.org/10.1029/2007EO020003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amiridis, V., and Coauthors, 2015: LIVAS: A 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET. Atmos. Chem. Phys., 15, 71277153, https://doi.org/10.5194/acp-15-7127-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., 2019: Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmos. Chem. Phys., 19, 85238546, https://doi.org/10.5194/acp-19-8523-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreoli, R. V, M. T. Kayano, J. Viegas, S. S. de Oliveira, R. A. F. de Souza, S. R. Garcia, W. H. T. Rego, and M. B. L. de Oliveira, 2018: Effects of two different La Niña types on the South American rainfall. Int. J. Climatol., 39, 14151428, https://doi.org/10.1002/JOC.5891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Artaxo, P., and Coauthors, 2002: Physical and chemical properties of aerosols in the wet and dry season in Rondônia, Amazonia. J. Geophys. Res., 107, 80818095, https://doi.org/10.1029/2001JD000666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Artaxo, P., and Coauthors, 2013: Atmospheric aerosols in Amazonia and land use change: From natural biogenic to biomass burning conditions. Faraday Discuss., 165, 203235, https://doi.org/10.1039/c3fd00052d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brando, P. M., and Coauthors, 2020: The gathering firestorm in southern Amazonia. Sci. Adv., 6, eaay1632, https://doi.org/10.1126/sciadv.aay1632.

  • Bucsela, E. J., and Coauthors, 2013: A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments, applications to OMI. Atmos. Meas. Tech., 6, 26072626, https://doi.org/10.5194/amt-6-2607-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butt, E. W., and Coauthors, 2020: Large air quality and human health impacts due to Amazon forest and vegetation fires. Environ. Res. Commun., 2, 095001, https://doi.org/10.1088/2515-7620/abb0db.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., D. Morton, N. Andela, G. Werf, L. Giglio, and J. Randerson, 2017: A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Climate Change, 7, 906911, https://doi.org/10.1038/s41558-017-0014-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cochrane, M. A., and W. F. Laurance, 2008: Synergisms among fire, land use, and climate change in the Amazon. Ambio, 37, 522527, https://doi.org/10.1579/0044-7447-37.7.522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and P. Aceituno, 2001: Atmospheric circulation over South America: Mean features and variability. The Physical Geography of South America, T. Veblen et al., Eds., Oxford University Press, 45–66.

  • Gonzalez-Alonso, L., M. Val Martin, and R. A. Kahn, 2019: Biomass-burning smoke heights over the Amazon observed from space. Atmos. Chem. Phys., 19, 16851702, https://doi.org/10.5194/acp-19-1685-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Climate Change and Land. P. R. Shukla et al., Eds., IPCC, www.ipcc.ch/srccl/, in press.

  • Jury, M. R., 2019: Northward excursion of the ITCZ across the inter-Americas during boreal summer. Meteor. Atmos. Phys., 131, 13571366, https://doi.org/10.1007/s00703-018-0642-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and K. Whitehall, 2010: Warming of an elevated layer over Africa. Climatic Change, 99, 229245, https://doi.org/10.1007/s10584-009-9657-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Justice, C. O., and Coauthors, 2002: The MODIS fire products. Remote Sens. Environ., 83, 244262, https://doi.org/10.1016/S0034-4257(02)00076-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingtse, M., and E. Berbery, 2011: Drought and persistent wet spells over South America based on observations and the CLIVAR drought experiment. J. Climate, 24, 18011820, https://doi.org/10.1175/2010JCLI3874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, J. S., 2003: Biomass burning: The cycling of gases and particulates from the biosphere to the atmosphere. Treatise on Geochemistry, H. D. Holland and K. K. Turekian, Eds., Pergamon, 143–158.

    • Crossref
    • Export Citation
  • Li, X., S. A. Christopher, J. Chou, and R. M. Welch, 2000: Estimation of shortwave direct radiative forcing of biomass-burning aerosols using new angular models. J. Appl. Meteor., 39, 22782291, https://doi.org/10.1175/1520-0450(2001)040<2278:EOSDRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magalhães, N., H. Evangelista, T. Condom, A. Rabatel, and P. Ginot, 2019: Amazonian biomass burning enhances tropical Andean glaciers melting. Sci. Rep., 9, 16914, https://doi.org/10.1038/s41598-019-53284-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magrin, G. O., J. A. Marengo, J.-P. Boulanger, M. S. Buckeridge, E. Castellanos, G. Poveda, F. R. Scarano, and S. Vicuña, 2014: Central and South America. Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part B: Regional Aspects, V. R. Barros et al., Eds., Cambridge University Press, 1499–1566, https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap27_FINAL.pdf.

  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, W. T., E. Darbyshire, D. V. Spracklen, P. Artaxo, and H. Coe, 2019: Non-deforestation drivers of fires are increasingly important sources of aerosol and carbon dioxide emissions across Amazonia. Sci. Rep., 9, 16975, https://doi.org/10.1038/s41598-019-53112-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2007: El Niño/Southern Oscillation—Annual 2007. NCEI, accessed 5 May 2020, www.ncdc.noaa.gov/sotc/enso/200713.

  • Palácios, R. D., and Coauthors, 2020: Long term analysis of optical and radiative properties of aerosols in the Amazon Basin. Aerosol Air Qual. Res., 20, 139154, https://doi.org/10.4209/aaqr.2019.04.0189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasquali, M., 2020: Deforestation area in the Brazilian Amazon. Statista, accessed 14 August 2020, www.statista.com/statistics/940696/.

  • Penner, J. E., R. E. Dickinson, and C. A. O’Neill, 1992: Effects of aerosols from biomass burning on the global radiation budget. Science, 256, 14321433, https://doi.org/10.1126/science.256.5062.1432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, C., V. Brooks-Genovese, S. Klooster, and A. Torregrosa, 2002: Biomass burning emissions of reactive gases estimated from satellite data analysis and ecosystem modeling for the Brazilian Amazon region. J. Geophys. Res., 107, 8056, https://doi.org/10.1029/2000JD000250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Procopio, A. S., P. Artaxo, Y. J. Kaufman, L. A. Remer, J. S. Schafer, and B. N. Holben, 2004: Multiyear analysis of Amazonian biomass burning smoke radiative forcing of climate. Geophys. Res. Lett., 31, L03108, https://doi.org/10.1029/2003GL018646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randles, C. A., A. M. Silva, V. Buchard, P. R. Colarco, A. Darmenov, and R. Govindaraju, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 68236850, https://doi.org/10.1175/JCLI-D-16-0609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, J. L., P. V. Hobbs, and B. Holben, 1998: Radiative characteristics of regional hazes dominated by smoke from biomass burning in Brazil: Closure tests and direct radiative forcing. J. Geophys. Res., 103, 31 92531 941, https://doi.org/10.1029/97JD03677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thonat, T., C. Crevoisier, N. A. Scott, A. Chédin, T. Schuck, R. Armante, and L. Crépeau, 2012: Retrieval of tropospheric CO column from hyperspectral infrared sounders—Application to four years of Aqua/AIRS and MetOp-A/IASI. Atmos. Meas. Tech., 5, 24132429, https://doi.org/10.5194/amt-5-2413-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornhill, G., C. Ryder, E. Highwood, L. Shaffrey, and B. Johnson, 2018: The effect of South American biomass burning aerosol emissions on the regional climate. Atmos. Chem. Phys., 18, 53215342, https://doi.org/10.5194/acp-18-5321-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. M. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worden, H. M., M. N. Deeter, D. P. Edwards, J. C. Gille, J. R. Drummond, and P. Nedelec, 2010: Observations of near-surface carbon monoxide from space using MOPITT multispectral retrievals. J. Geophys. Res., 115, D18314, https://doi.org/10.1029/2010JD014242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Coauthors, 2018: Post-drought decline of the Amazon carbon sink. Nat. Commun., 9, 3172, https://doi.org/10.1038/s41467-018-05668-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yurganov, L. N., W. W. McMillan, A. V. Dzhola, E. I. Grechko, N. B. Jones, and G. R. van der Werf, 2008: Global AIRS and MOPITT CO measurements: Validation, comparison, and links to biomass burning variations and carbon cycle. J. Geophys. Res., 113, D09301, https://doi.org/10.1029/2007JD009229.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2 2 0
Full Text Views 127 127 78
PDF Downloads 136 136 92

Dispersion of Smoke Plumes over South America

View More View Less
  • 1 Physics Department, University of Puerto Rico Mayagüez, Mayagüez, Puerto Rico
  • 2 Geography Department, University of Zululand, Richards Bay, South Africa
© Get Permissions
Restricted access

Abstract

Satellite and reanalysis products are used to study the atmospheric environment, aerosols, and trace gases in smoke plumes over South America in the period 2000–18. Climatic conditions and fire density maps provide context to link biomass burning across the southern Amazon region (5°–15°S, 50°–70°W) to thick near-surface plumes of trace gases and fine aerosols. Intraseasonal weather patterns that underpin greater fire emissions in the dry season (July–October) are exacerbated by high pressure over a cool eastern Pacific Ocean, for example in September 2007. Smoke-plume dispersion simulated with HYSPLIT reveals a slowing of westward transport between sources in eastern Brazil and the Andes Mountains. During cases of thick smoke plumes over southern Amazon, an upper ridge and sinking motions confine trace gases and fine aerosols below 4 km. Long-term warming, which tends to coincide with the zone of biomass burning, is +0.03°C yr−1 in the air and +0.1°C yr−1 at the land surface. Our study suggests that weather conditions promoting fire emissions also tend to limit dispersion.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mark R. Jury, mark.jury@upr.edu

Abstract

Satellite and reanalysis products are used to study the atmospheric environment, aerosols, and trace gases in smoke plumes over South America in the period 2000–18. Climatic conditions and fire density maps provide context to link biomass burning across the southern Amazon region (5°–15°S, 50°–70°W) to thick near-surface plumes of trace gases and fine aerosols. Intraseasonal weather patterns that underpin greater fire emissions in the dry season (July–October) are exacerbated by high pressure over a cool eastern Pacific Ocean, for example in September 2007. Smoke-plume dispersion simulated with HYSPLIT reveals a slowing of westward transport between sources in eastern Brazil and the Andes Mountains. During cases of thick smoke plumes over southern Amazon, an upper ridge and sinking motions confine trace gases and fine aerosols below 4 km. Long-term warming, which tends to coincide with the zone of biomass burning, is +0.03°C yr−1 in the air and +0.1°C yr−1 at the land surface. Our study suggests that weather conditions promoting fire emissions also tend to limit dispersion.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mark R. Jury, mark.jury@upr.edu
Save