Turbulence Kinetic Energy Dissipation Rate Estimate for a Low-Level Jet with Doppler Lidar Data: A Case Study

Cassia M. L. Beu aInstituto de Pesquisas Energeticas e Nucleares, Sao Paulo, Brazil

Search for other papers by Cassia M. L. Beu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7091-8752
and
Eduardo Landulfo aInstituto de Pesquisas Energeticas e Nucleares, Sao Paulo, Brazil

Search for other papers by Eduardo Landulfo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Low-level jets are a recurrent feature of our study area in Ipero municipality of southeastern Brazil. They grow very near the surface as shown by this case study. These two aspects increase the needs for a realistic modeling of the low-level jet to simulate the atmospheric dispersion of industrial emissions. In this concern, we applied a recently proposed technique to estimate the turbulence kinetic energy dissipation rate of a low-level jet case with Doppler lidar data. This low-level jet remained for its entire lifetime (around 12 h) within a shallow layer (under 300 m); beyond this, we did not notice a remarkable directional shear as in other studies. Even for a shallow layer as for this study case, we observed strong spatiotemporal variability of the turbulence kinetic energy dissipation rate. We also detected a channel connecting the layers above and below the low-level jet that may be an exchange channel of their properties.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cassia M. L. Beu, cassia.beu@gmail.com

Abstract

Low-level jets are a recurrent feature of our study area in Ipero municipality of southeastern Brazil. They grow very near the surface as shown by this case study. These two aspects increase the needs for a realistic modeling of the low-level jet to simulate the atmospheric dispersion of industrial emissions. In this concern, we applied a recently proposed technique to estimate the turbulence kinetic energy dissipation rate of a low-level jet case with Doppler lidar data. This low-level jet remained for its entire lifetime (around 12 h) within a shallow layer (under 300 m); beyond this, we did not notice a remarkable directional shear as in other studies. Even for a shallow layer as for this study case, we observed strong spatiotemporal variability of the turbulence kinetic energy dissipation rate. We also detected a channel connecting the layers above and below the low-level jet that may be an exchange channel of their properties.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cassia M. L. Beu, cassia.beu@gmail.com
Save
  • Allen, C. J., and R. Washington, 2014: The low-level jet dust emission mechanism in the central Sahara: Observations from Bordj-Badji Mokhtar during the June 2011 Fennec intensive observation period. J. Geophys. Res. Atmos., 119, 29903015, https://doi.org/10.1002/2013JD020594.

    • Search Google Scholar
    • Export Citation
  • Banakh, V. A., and I. N. Smalikho, 2018: Lidar studies of wind turbulence in the stable atmospheric boundary layer. Remote Sens., 10, 1219, https://doi.org/10.3390/rs10081219.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 1998: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. J. Geophys. Res., 103, 22 51922 544, https://doi.org/10.1029/98JD01020.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, https://doi.org/10.1023/A:1019992330866.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719, https://doi.org/10.1175/JAS3776.1.

    • Search Google Scholar
    • Export Citation
  • Bodini, N., J. K. Lundquist, R. Krishnamurthy, M. Pekour, and L. K. Berg, 2018a: Spatial and temporal variability of turbulence dissipation rate in complex terrain. Atmos. Chem. Phys. Discuss., 1, 127, https://doi.org/10.5194/acp-2018-1131.

    • Search Google Scholar
    • Export Citation
  • Bodini, N., J. K. Lundquist, and R. K. Newsom, 2018b: Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign. Atmos. Meas. Tech., 11, 42914308, https://doi.org/10.5194/amt-11-4291-2018.

    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., W. G. Blumberg, P. M. Klein, and P. B. Chilson, 2015: Thermodynamic and turbulence characteristics of the southern Great Plains nocturnal boundary layer under differing turbulent regimes. Bound.-Layer Meteor., 157, 401420, https://doi.org/10.1007/s10546-015-0072-2.

    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., J. F. Newman, P. M. Klein, P. B. Chilson, and S. Wharton, 2016: Improvement of vertical velocity statistics measured by a Doppler lidar through comparison with sonic anemometer observations. Atmos. Meas. Tech., 9, 58335852, https://doi.org/10.5194/amt-9-5833-2016.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., K. J. Allwine, and R. M. Banta, 2006: Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. J. Appl. Meteor. Climatol., 45, 740753, https://doi.org/10.1175/JAM2367.1.

    • Search Google Scholar
    • Export Citation
  • Deb Burman, P. K., T. V. Prabha, R. Morrison, and A. Karipot, 2018: A case study of turbulence in the nocturnal boundary layer during the Indian summer monsoon. Bound.-Layer Meteor., 169, 115138, https://doi.org/10.1007/s10546-018-0364-4.

    • Search Google Scholar
    • Export Citation
  • Foken, T., 2008: Micrometeorology. Springer, 306 pp.

  • Jia, S., F. Melvin, L. Liqiao, M. M. Patrick, D. Ruben, and S. P. Alexandra, 2016: Lidar remote sensing of cloud formation caused by low-level jets. J. Geophys. Res. Atmos., 121, 59045911, https://doi.org/10.1002/2015JD024590.

    • Search Google Scholar
    • Export Citation
  • Karam, H. A., A. P. Oliveira, and M. M. R. Pereira, 2001: Application of a Lagrangian model to investigate patterns of radionuclides dispersion over complex terrain—Part 1: Local circulation and low-level jet. Proc. Seventh Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Belgirate, Italy, HARMO, 395–399.

  • Manninen, A. J., T. Marke, M. Tuononen, and E. J. O’Connor, 2018: Atmospheric boundary layer classification with Doppler lidar. J. Geophys. Res. Atmos., 123, 81728189, https://doi.org/10.1029/2017JD028169.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 430 pp.

  • McCaffrey, K., L. Bianco, and J. M. Wilczak, 2017: Improved observations of turbulence dissipation rates from wind profiling radars. Atmos. Meas. Tech., 10, 25952611, https://doi.org/10.5194/amt-10-2595-2017.

    • Search Google Scholar
    • Export Citation
  • Newman, J. F., P. M. Klein, S. Wharton, A. Sathe, T. A. Bonin, P. B. Chilson, and A. Muschinski, 2016: Evaluation of three lidar scanning strategies for turbulence measurements. Atmos. Meas. Tech., 9, 19932013, https://doi.org/10.5194/amt-9-1993-2016.

    • Search Google Scholar
    • Export Citation
  • Nobre, C. A., J. A. Marengo, and P. Artaxo, 2013: Understanding the climate of Amazonia: Progress from LBA. Amazonia and Global Change, Geophys. Monogr., Vol. 186, Amer. Geophys. Union, 145–147, https://doi.org/10.1029/2008GM000716.

  • O’Connor, E. J., A. J. Illingworth, I. M. Brooks, C. D. Westbrook, R. J. Hogan, F. Davies, and B. J. Brooks, 2010: A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements. J. Atmos. Oceanic Technol., 27, 16521664, https://doi.org/10.1175/2010JTECHA1455.1.

    • Search Google Scholar
    • Export Citation
  • Oliveira, A. P., G. A. Degrazia, O. L. L. Moraes, and T. Tirabassi, 1995: Numerical study of the nocturnal planetary boundary layer at low latitudes. Trans. Ecol. Environ., 9, 167174.

    • Search Google Scholar
    • Export Citation
  • Peña, A., and Coauthors, 2013: Remote Sensing for Wind Energy. DTU Wind Energy, 260 pp.

  • Pereira, M. M. R., A. P. Oliveira, and H. A. Karam, 2001: Application of a Lagrangian model to investigate patterns of radionuclides dispersion over complex terrain—Part 2: The impact of the low-level jet in the concentration field. Proc. Seventh Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Belgirate, Italy, HARMO, 400–404.

  • Sanchez Gomez, M., J. K. Lundquist, P. M. Klein, and T. M. Bell, 2021: Turbulence dissipation rate estimated from lidar observations during the LAPSE-RATE field campaign. Earth Syst. Sci. Data, 13, 35393549, https://doi.org/10.5194/essd-13-3539-2021.

    • Search Google Scholar
    • Export Citation
  • Smalikho, I. N., and V. A. Banakh, 2017: Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer. Atmos. Meas. Tech., 10, 41914208, https://doi.org/10.5194/amt-10-4191-2017.

    • Search Google Scholar
    • Export Citation
  • Stein, A., R. Draxler, G. Rolph, B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sullivan, J. T., S. D. Rabenhorst, J. Dreessen, T. J. McGee, R. Delgado, L. Twigg, and G. Sumnicht, 2017: Lidar observations revealing transport of O3 in the presence of a nocturnal low-level jet: Regional implications for “next-day” pollution. Atmos. Environ., 158, 160171, https://doi.org/10.1016/j.atmosenv.2017.03.039.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., B. B. Balsley, G. Svensson, and C. J. Nappo, 2009: The effects of critical layers on residual layer turbulence. J. Atmos. Sci., 66, 468480, https://doi.org/10.1175/2008JAS2729.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., V. Wulfmeyer, A. Behrendt, T. A. Bonin, A. Choukulkar, R. K. Newsom, W. A. Brewer, and D. R. Cook, 2018: Response of the land-atmosphere system over north-central Oklahoma during the 2017 eclipse. Geophys. Res. Lett., 45, 16681675, https://doi.org/10.1002/2017GL076908.

    • Search Google Scholar
    • Export Citation
  • Wagner, T. J., P. M. Klein, and D. D. Turner, 2019: A new generation of ground-based mobile platforms for active and passive profiling of the boundary layer. Bull. Amer. Meteor. Soc., 100, 137153, https://doi.org/10.1175/BAMS-D-17-0165.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2018: A new research approach for observing and characterizing land–atmosphere feedback. Bull. Amer. Meteor. Soc., 99, 16391667, https://doi.org/10.1175/BAMS-D-17-0009.1.

    • Search Google Scholar
    • Export Citation
  • Yang, B., and Coauthors, 2017: Sensitivity of turbine-height wind speeds to parameters in planetary boundary-layer and surface-layer schemes in the weather research and forecasting model. Bound.-Layer Meteor., 162, 117142, https://doi.org/10.1007/s10546-016-0185-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 0 0
Full Text Views 2668 1600 78
PDF Downloads 900 140 16