Space–Time Variability of Summer Hydroclimate in the U.S. Prairie Pothole Region

Benjamin D. Abel aDepartment of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Benjamin D. Abel in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0344-8137
,
Balaji Rajagopalan aDepartment of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado
bCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Balaji Rajagopalan in
Current site
Google Scholar
PubMed
Close
, and
Andrea J. Ray cPhysical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado

Search for other papers by Andrea J. Ray in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Prairie Pothole Region (PPR) experiences considerable space–time variability in temperature and precipitation, and this variability is expected to increase. The PPR is sensitive to this variability—it plays a large role in the water availability of the region. Thousands of wetlands in the region, sometimes containing ponds, provide habitats and breeding grounds for various species. Many wildlife management decisions are planned and executed on subseasonal-to-seasonal time scales and would benefit from knowledge of seasonal conditions at longer lead times. Therefore, it is important to understand potential driving mechanisms and teleconnections behind space–time climate variability in the PPR. We performed principal component analysis on summer precipitation of the southeastern PPR (SEPPR) to determine the leading principal components (PCs) of variability. These PCs were used to establish teleconnections to large-scale climate variables and indices. They were also used to determine potential mechanisms driving the precipitation variability. There were teleconnections to Pacific and Atlantic Ocean sea surface temperatures (SST) resembling the Pacific decadal oscillation and El Niño–Southern Oscillation, low 500-hPa heights over the western United States, and the Palmer drought severity index over the SEPPR. A large-scale low pressure region over the northwestern United States and a pattern like the Great Plains low-level jet, observed in the 500- and 850-hPa heights and winds, are a potential mechanism of the precipitation variability by increasing precipitation during wet PC1 years. These findings can inform management actions to maintain and restore wildlife habitat and the resources used for those actions in the PPR.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin D. Abel, benjamin.abel@colorado.edu

Abstract

The Prairie Pothole Region (PPR) experiences considerable space–time variability in temperature and precipitation, and this variability is expected to increase. The PPR is sensitive to this variability—it plays a large role in the water availability of the region. Thousands of wetlands in the region, sometimes containing ponds, provide habitats and breeding grounds for various species. Many wildlife management decisions are planned and executed on subseasonal-to-seasonal time scales and would benefit from knowledge of seasonal conditions at longer lead times. Therefore, it is important to understand potential driving mechanisms and teleconnections behind space–time climate variability in the PPR. We performed principal component analysis on summer precipitation of the southeastern PPR (SEPPR) to determine the leading principal components (PCs) of variability. These PCs were used to establish teleconnections to large-scale climate variables and indices. They were also used to determine potential mechanisms driving the precipitation variability. There were teleconnections to Pacific and Atlantic Ocean sea surface temperatures (SST) resembling the Pacific decadal oscillation and El Niño–Southern Oscillation, low 500-hPa heights over the western United States, and the Palmer drought severity index over the SEPPR. A large-scale low pressure region over the northwestern United States and a pattern like the Great Plains low-level jet, observed in the 500- and 850-hPa heights and winds, are a potential mechanism of the precipitation variability by increasing precipitation during wet PC1 years. These findings can inform management actions to maintain and restore wildlife habitat and the resources used for those actions in the PPR.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin D. Abel, benjamin.abel@colorado.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.80 MB)
Save
  • Abel, B., B. Rajagopalan, and A. Ray, 2020: A predictive model for seasonal pond counts in the United States Prairie Pothole Region using large-scale climate connections. Environ. Res. Lett., 15, 044019, https://doi.org/10.1088/1748-9326/ab7465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anteau, M., M. Wiltermuth, M. Burg, and A. Pearse, 2016: Prerequisites for understanding climate-change impacts on northern prairie wetlands. Wetlands, 36, 299307, https://doi.org/10.1007/s13157-016-0811-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balas, C., N. Euliss, and D. Mushet, 2012: Influence of conservation programs on amphibians using seasonal wetlands in the Prairie Pothole Region. Wetlands, 32, 333345, https://doi.org/10.1007/s13157-012-0269-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballard, T., and Coauthors, 2014: Hydroclimate variability and change in the Prairie Pothole Region, the “Duck Factory” of North America. Earth Interact., 18, https://doi.org/10.1175/EI-D-14-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batt, B., M. Anderson, C. Anderson, and F. Caswell, 1989: The use of prairie potholes by North American ducks. Northern Prairie Wetlands, A. van der Valk, Ed., Iowa State University Press, 204–227.

  • Brunnschweiler, D., 1952: The geographic distribution of air masses in North America. Vie Vierteljahrsschr. Naturforsch. Ges. Zuerich, 97, 4249.

    • Search Google Scholar
    • Export Citation
  • Bryson, R., and F. Hare, 1974: Climates of North America. World Survey of Climatology, H. Landsberg, Ed., Vol. 11, Elsevier, 1–47.

  • Capotondi, A., and M. Alexander, 2010: Relationship between precipitation in the Great Plains of the United States and global SSTs: Insights from the IPCC AR4 models. J. Climate, 23, 29412958, https://doi.org/10.1175/2009JCLI3291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattell, R., 1966: The Scree test for the number of factors. Multivar. Behav. Res., 1, 245276, https://doi.org/10.1207/s15327906mbr0102_10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conant, R. , and Coauthors, 2018: Northern Great Plains. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Vol. II, D. Reidmiller et al., Eds., U.S. Global Change Research Program, 941–986, https://doi.org/10.7930/NCA4.2018.CH22.

    • Crossref
    • Export Citation
  • Cook, K., E. Vizy, Z. Launer, and C. Patricola, 2008: Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first century. J. Climate, 21, 63216340, https://doi.org/10.1175/2008JCLI2355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, D., and A. Stuart, 1955: Some quick sign tests for trend in location and dispersion. Biometrika, 42, 8095, https://doi.org/10.1093/biomet/42.1-2.80.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, T., 2014: Status and trends of prairie wetlands in the United States 1997 to 2009. U.S. Department of the Interior Fish and Wildlife Service Ecological Services Doc., 80 pp., https://www.fws.gov/wetlands/Documents/Status-and-Trends-of-Prairie-Wetlands-in-the-United-States-1997-to-2009.pdf.

  • Dai, A., K. E. Trenberth, and T. Qian, 2004: A global dataset of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130, https://doi.org/10.1175/JHM-386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, https://doi.org/10.1029/2010JD013892.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N., 2009: Influence of modern land cover on the climate of the United States. Climate Dyn., 33, 945958, https://doi.org/10.1007/s00382-009-0566-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyke, S., S. Johnson, and P. Isakson, 2015: North Dakota State wildlife action plan. North Dakota Game and Fish Department Doc., 468 pp., https://gf.nd.gov/sites/default/files/publications/swap-2015_0.pdf.

  • Flanagan, P., J. Basara, J. Furtado, and X. Xiao, 2018: Primary atmospheric drivers of pluvial years in the United States Great Plains. J. Hydrometeor., 19, 643658, https://doi.org/10.1175/JHM-D-17-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanagan, P., J. Basara, J. Furtado, E. Martin, and X. Xiao, 2019: Role of sea surface temperatures in forcing circulation anomalies driving U.S. Great Plains pluvial years. J. Climate, 32, 70817100, https://doi.org/10.1175/JCLI-D-18-0726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleason, R., and A. Tangen, 2008: Floodwater storage. Ecosystem services derived from wetland conservation practices in the United States Prairie Pothole Region with an emphasis on the U.S. Department of Agriculture Conservation Reserve and Wetlands Reserve Programs, R. Gleason, M. Laubhan, and N. Euliss Jr., Eds., U.S. Geological Survey Professional Paper 1745, 31–37.

    • Crossref
    • Export Citation
  • Gleason, R., N. Euliss Jr., B. Tangen, M. Laubhan, and B. Browne, 2011: USDA conservation program and practice effects on wetland ecosystem services in the Prairie Pothole Region. Ecol. Appl., 21, S65S81, https://doi.org/10.1890/09-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, M., G. Kamp, and D. Rosenberry, 2016: Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes. Wetlands, 36, 237254, https://doi.org/10.1007/s13157-016-0797-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howerter, D., M. Anderson, J. Devries, B. Joynt, L. Armstrong, R. Emery, and T. Arnold, 2014: Variation in mallard vital rates in Canadian Aspen Parklands: The prairie habitat joint venture assessment. Wildlife Monogr., Vol. 188, Wildlife Society, 1–37, https://doi.org/10.1002/wmon.1012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 60476065, https://doi.org/10.1175/2009JCLI2798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: NOAA Extended Reconstructed Sea Surface Temperature (ERSST), version 5. National Centers for Environmental Information, accessed 12 January 2021, https://doi.org/10.7289/V5T72FNM.

    • Crossref
    • Export Citation
  • Huang, S., D. Dahal, C. Young, G. Chander, and S. Liu, 2011: Integration of Palmer drought severity index and remote sensing data to simulate wetland water surface from 1910 to 2009 in Cottonwood Lake area, North Dakota. Remote Sens. Environ., 115, 33773389, https://doi.org/10.1016/j.rse.2011.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, W. C., and K. Poiani, 2016: Climate change effects on Prairie Pothole wetlands: Findings from a twenty-five year numerical modeling project. Wetlands, 36, 273285, https://doi.org/10.1007/s13157-016-0790-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, W. C., S. Boettcher, K. Poiani, and G. Guntenspergen, 2004: Influences of weather extremes on the hydrology of glaciated prairie wetlands. Wetlands, 24, 385398, https://doi.org/10.1672/0277-5212(2004)024[0385:IOWEOT]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, W. C., B. V. Millett, T. Gilmanov, R. A. Voldseth, G. R. Guntenspergen, and D. E. Naugle, 2005: Vulnerability of northern prairie wetlands to climate change. BioScience, 55, 863872, https://doi.org/10.1641/0006-3568(2005)055[0863:VONPWT]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, W., and Coauthors, 2010: Prairie wetland complexes as landscape functional units in a changing climate. BioScience, 60, 128140, https://doi.org/10.1525/bio.2010.60.2.7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I., 2002: Principal Component Analysis. Springer, 518 pp., https://doi.org/10.1007/b98835.

    • Crossref
    • Export Citation
  • Jolliffe, I., and J. Cadima, 2016: Principal component analysis: A review and recent developments. Philos. Trans. Roy. Soc., A374, 20150202, https://doi.org/10.1098/rsta.2015.0202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantrud, H., G. Krapu, and G. Swanson, 1989: Prairie basin wetlands of the Dakotas: A community profile. U.S. Fish and Wildlife Service Biological Rep. 85(7.28), 111 pp., https://pubs.er.usgs.gov/publication/2000127.

  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 567–18 589, https://doi.org/10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., G. Vecchi, R. Msadek, A. Wittenberg, T. Delworth, and F. Zeng, 2015: The seasonality of the Great Plains low-level jet and ENSO relationship. J. Climate, 28, 45254544, https://doi.org/10.1175/JCLI-D-14-00590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K., and Coauthors, 2013: Climate of the U.S. Great Plains. Regional climate trends and scenarios for the U.S. National Climate Assessment, Part 4, NOAA Tech. Rep. NESDIS 142-4, 91 pp., https://scenarios.globalchange.gov/sites/default/files/NOAA_NESDIS_Tech_Report_142-4-Climate_of_the_U.S.%20Great_Plains_0.pdf.

  • Kushnir, Y., R. Seager, M. Ting, N. Naik, and J. Nakamura, 2010: Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J. Climate, 23, 56105628, https://doi.org/10.1175/2010JCLI3172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaBaugh, J., D. Mushet, D. Rosenberry, N. Euliss, M. Goldhaber, C. Mills, and R. Nelson, 2016: Changes in pond water levels and surface extent due to climate variability alter solute sources to closed-basin prairie-pothole wetland ponds, 1979 to 2012. Wetlands, 36, 343355, https://doi.org/10.1007/s13157-016-0808-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaBaugh, J., D. Rosenberry, D. Mushet, B. Neff, R. Nelson, and N. Euliss, 2018: Long-term changes in pond permanence, size, and salinity in Prairie Pothole Region wetlands: The role of groundwater-pond interaction. J. Hydrol. Reg. Stud., 17, 123, https://doi.org/10.1016/j.ejrh.2018.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, D., 1995: Effects of climate on numbers of northern prairie wetlands. Climatic Change, 30, 169180, https://doi.org/10.1007/BF01091840.

  • Li, L., R. Schmitt, C. Ummenhofer, and K. Karnauskas, 2016: Implications of North Atlantic Sea surface salinity for summer precipitation over the U.S. Midwest: Mechanisms and predictive value. J. Climate, 29, 31433159, https://doi.org/10.1175/JCLI-D-15-0520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., R. Schmitt, and C. Ummenhofer, 2017: The role of the subtropical North Atlantic water cycle in recent us extreme precipitation events. Climate Dyn., 50, 12911305, https://doi.org/10.1007/s00382-017-3685-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, A. Z., M. Ting, and H. Wang, 1998: Maintenance of circulation anomalies during the 1988 drought and 1993 floods over the United States. J. Atmos. Sci., 55, 28102832, https://doi.org/10.1175/1520-0469(1998)055<2810:MOCADT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., and F. Schwartz, 2012: Climate-driven variability in lake and wetland distribution across the Prairie Pothole Region: From modern observations to long-term reconstructions with space-for-time substitution. Water Resour. Res., 48, W08526, https://doi.org/10.1029/2011WR011539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobell, D., G. Bala, A. Mirin, T. Phillips, R. Maxwell, and D. Rotman, 2009: Regional differences in the influence of irrigation on climate. J. Climate, 22, 22482255, https://doi.org/10.1175/2008JCLI2703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malloy, K., and B. Kirtman, 2020: Predictability of midsummer Great Plains low-level jet and associated precipitation. Wea. Forecasting, 35, 215235, https://doi.org/10.1175/WAF-D-19-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCauley, L., M. Anteau, M. Burg, and M. Wiltermuth, 2015: Land use and wetland drainage affect water levels and dynamics of remaining wetlands. Ecosphere, 6 (4), 122, https://doi.org/10.1890/ES14-00514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKenna, O., D. Mushet, D. Rosenberry, and J. LaBaugh, 2017: Evidence for a climate-induced ecohydrological state shift in wetland ecosystems of the southern Prairie Pothole Region. Climatic Change, 145, 273287, https://doi.org/10.1007/s10584-017-2097-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millett, B., W. Johnson, and G. Guntenspergen, 2009: Climate trends of the North American prairie pothole region 1906–2000. Climatic Change, 93, 243267, https://doi.org/10.1007/s10584-008-9543-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mushet, D., 2016: Midcontinent prairie-pothole wetlands and climate change: An introduction to the supplemental issue. Wetlands, 36, 223228, https://doi.org/10.1007/s13157-016-0852-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niemuth, N., B. Wangler, and R. Reynolds, 2010: Spatial and temporal variation in wet area of wetlands in the Prairie Pothole Region of North Dakota and South Dakota. Wetlands, 30, 10531064, https://doi.org/10.1007/s13157-010-0111-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J., D. Gray, K. Shook, B. Toth, R. Essery, A. Pietroniro, and N. Hedstrom, 1998: An evaluation of snow accumulation and ablation processes for land surface modelling. Hydrol. Processes, 12, 23392367, https://doi.org/10.1002/(SICI)1099-1085(199812)12:15<2339::AID-HYP800>3.0.CO;2-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, B., R. Fu, R. Dickinson, and D. Fernando, 2016: Why do summer droughts in the southern Great Plains occur in some La Niña years but not others? J. Geophys. Res. Atmos., 121, 11201137, https://doi.org/10.1002/2015JD023508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., T. W. Ford, J. K. Wang, A. Khong, E. Harris, T. Lindgren, D. W. Goldberg, and Z. Li, 2016: The North American Soil Moisture Database: Development and applications. Bull. Amer. Meteor. Soc., 97, 14411459, https://doi.org/10.1175/BAMS-D-13-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R., and T. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation J. Climate, 7, 929948, https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberry, D., 2003: Climate of the cottonwood lake area. Hydrological, chemical, and biological characteristics of a prairie pothole wetland complex under highly variable climate conditions—The Cottonwood Lake Area, east-central North Dakota, T. Winter, Ed., U.S. Geological Survey Professional Paper 1675, 25–34, https://doi.org/10.3133/pp1675.

    • Crossref
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2005: Warm season rainfall variability over the U.S. Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J. Climate, 18, 18081830, https://doi.org/10.1175/JCLI3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sacks, W., B. Cook, N. Buenning, S. Levis, and J. Helkowski, 2009: Effects of global irrigation on the near-surface climate. Climate Dyn., 33, 159175, https://doi.org/10.1007/s00382-008-0445-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., 2004: On the cause of the 1930s dust bowl. Science, 303, 18551859, https://doi.org/10.1126/science.1095048.

  • Seager, R., and M. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, https://doi.org/10.1175/JCLI-D-13-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shabbar, A., B. Bonsal, and K. Szeto, 2011: Atmospheric and oceanic variability associated with growing season droughts and pluvials on the Canadian prairies. Atmos.–Ocean, 49, 339355, https://doi.org/10.1080/07055900.2011.564908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sleeter, B., T. Loveland, G. Domke, N. Herold, J. Wickham, and N. Wood, 2018: Land cover and land-use change. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Vol. II, D. R. Reidmiller et al., Eds., U.S. Global Change Research Program, 202–231, https://doi.org/10.7930/NCA4.2018.CH5.

    • Crossref
    • Export Citation
  • Smith, A., J. Stoudt, and J. Gallop, 1964: Prairie pothole wetlands and marshes. Waterfowl Tomorrow, J. Linduska, Ed., U.S. Government Printing Office, 39–50.

  • Song, J., K. Liao, R. Coulter, and B. Lesht, 2005: Climatology of the low-level jet at the Southern Great Plains atmospheric boundary layer experiments site. J. Appl. Meteor., 44, 15931606, https://doi.org/10.1175/JAM2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorenson, L., R. Goldberg, T. Root, and M. Anderson, 1998: Potential effects of global warming on waterfowl populations breeding in the northern Great Plains. Climatic Change, 40, 343369, https://doi.org/10.1023/A:1005441608819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steen, V., S. Skagen, and B. Noon, 2014: Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, USA. PLOS ONE, 9, e96747, https://doi.org/10.1371/journal.pone.0096747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and H. Wang, 1997: Summertime U.S. precipitation variability and its relation to Pacific sea surface temperature. J. Climate, 10, 18531873, https://doi.org/10.1175/1520-0442(1997)010<1853:SUSPVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc, 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Fish and Wildlife Service, 2015: Kulm wetland management district habitat management plan. U.S. Department of the Interior Fish and Wildlife Service, accessed 21 February 2020, https://ecos.fws.gov/ServCat/DownloadFile/50591.

  • van der Valk, A., 2005: Water-level fluctuations in North American prairie wetlands. Hydrobiologia, 539, 171199, https://doi.org/10.1007/s10750-004-4866-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchia, A., 2008: Climate simulation and flood risk analysis for 2008–40 for Devils Lake, North Dakota. U.S. Geological Survey Scientific Investigations Rep. 2008–5011, 29 pp., https://doi.org/10.3133/sir20085011.

    • Crossref
    • Export Citation
  • von Storch, H., 1999: Spatial patterns: EOFs and CCA. Analysis of Climate Variability, H. von Storch and A. Navarra, Eds., Springer, 231–263.

    • Crossref
    • Export Citation
  • Vose, R. S., and Coauthors, 2014: NOAA’s Gridded Climate Divisional Dataset (CLIMDIV) [prcp]. NOAA National Climatic Data Center, accessed 26 January 2018, https://doi.org/10.7289/V5M32STR.

    • Crossref
    • Export Citation
  • Weaver, S., and S. Nigam, 2008: Variability of the Great Plains low-level jet: Large-scale circulation context and hydroclimate impacts. J. Climate, 21, 15321551, https://doi.org/10.1175/2007JCLI1586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, C., and Coauthors, 2017: Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteor. Appl., 24, 315325, https://doi.org/10.1002/met.1654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, T., 2000: The vulnerability of wetlands to climate change: A hydrologic landscape perspective. J. Amer. Water Resour. Assoc., 36, 305311, https://doi.org/10.1111/j.1752-1688.2000.tb04269.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yocum, H., and A. Ray, 2019: Climate information to support wildlife management in the north central United States. Reg. Environ. Change, 19, 11871199, https://doi.org/10.1007/s10113-019-01474-y.

    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, J. Winkler, D. Doubler, X. Bian, and C. Walters, 2017: The inter-annual variability of southerly low-level jets in North America. Int. J. Climatol., 37, 343357, https://doi.org/10.1002/joc.4708.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 0 0
Full Text Views 2821 1641 72
PDF Downloads 845 77 3