Positive Associations of Vegetation with Temperature over the Alpine Grasslands in the Western Tibetan Plateau during May

S. K. Yadav aDepartment of Geology and Geography, West Virginia University, Morgantown, West Virginia

Search for other papers by S. K. Yadav in
Current site
Google Scholar
PubMed
Close
,
E. Lee bDepartment of Geography, Kyung Hee University, Seoul, South Korea

Search for other papers by E. Lee in
Current site
Google Scholar
PubMed
Close
, and
Y. He cDepartment of Geography, University of Central Arkansas, Conway, Arkansas

Search for other papers by Y. He in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Tibetan Plateau (TP) has undergone extreme changes in climatic and land surface conditions that are due to a warming climate and land-cover changes. We examined the change in vegetation dynamics from 1982 to 2015 and explored the associations of vegetation with atmospheric variables over the alpine grasslands in the western TP during May as an early growing season. The linear regression analysis of area-averaged normalized difference vegetation index (NDVI) over the western TP in May demonstrated a 7.5% decrease of NDVI during the period from 1982 to 2015, an increase of NDVI by 11.3% from 1982 to 1998, and a decrease of NDVI by 14.5% from 1999 to 2015. The significantly changed NDVI in the western TP could result in the substantial changes in surface energy balances as shown in the surface climatic variables of albedo, net solar radiation, sensible heat flux, latent heat fluxes, and 2-m temperature. The land and atmosphere associations were not confined to the surface but also extended into the upper-level atmosphere up to the 300-hPa level as indicated by the significant positive associations between NDVI and temperatures in both air temperature and equivalent temperature, resulting in more than a 1-K increase with NDVI. Therefore, we concluded that the increasing or decreasing vegetation cover in the western TP during May can respectively increase or decrease the temperatures near the surface and upper atmosphere through a positive physical linkage among the vegetation cover, surface energy fluxes, and temperatures. The positive energy processes of vegetation with temperature could further amplify the variations of temperature and thus water availability.

Significance Statement

The Tibetan Plateau (TP) is an important landmass that plays a significant role in both regional and global climates. This study aims to examine the vegetation change in the TP during May as an early growing season to examine the changes in the near-surface and upper-level climatic conditions associated with vegetation change and to identify the plausible physical processes of the vegetation effects on atmosphere. The satellite-derived vegetation index showed a 7.5% decrease from 1982 to 2015 in the western TP during May. This study identified the positive associations of vegetation activity with temperature and proposed a positive energy process for land–atmosphere interactions over the alpine grasslands in the western region of TP during the transition period from winter to spring.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eungul Lee, eungul.lee@khu.ac.kr

Abstract

The Tibetan Plateau (TP) has undergone extreme changes in climatic and land surface conditions that are due to a warming climate and land-cover changes. We examined the change in vegetation dynamics from 1982 to 2015 and explored the associations of vegetation with atmospheric variables over the alpine grasslands in the western TP during May as an early growing season. The linear regression analysis of area-averaged normalized difference vegetation index (NDVI) over the western TP in May demonstrated a 7.5% decrease of NDVI during the period from 1982 to 2015, an increase of NDVI by 11.3% from 1982 to 1998, and a decrease of NDVI by 14.5% from 1999 to 2015. The significantly changed NDVI in the western TP could result in the substantial changes in surface energy balances as shown in the surface climatic variables of albedo, net solar radiation, sensible heat flux, latent heat fluxes, and 2-m temperature. The land and atmosphere associations were not confined to the surface but also extended into the upper-level atmosphere up to the 300-hPa level as indicated by the significant positive associations between NDVI and temperatures in both air temperature and equivalent temperature, resulting in more than a 1-K increase with NDVI. Therefore, we concluded that the increasing or decreasing vegetation cover in the western TP during May can respectively increase or decrease the temperatures near the surface and upper atmosphere through a positive physical linkage among the vegetation cover, surface energy fluxes, and temperatures. The positive energy processes of vegetation with temperature could further amplify the variations of temperature and thus water availability.

Significance Statement

The Tibetan Plateau (TP) is an important landmass that plays a significant role in both regional and global climates. This study aims to examine the vegetation change in the TP during May as an early growing season to examine the changes in the near-surface and upper-level climatic conditions associated with vegetation change and to identify the plausible physical processes of the vegetation effects on atmosphere. The satellite-derived vegetation index showed a 7.5% decrease from 1982 to 2015 in the western TP during May. This study identified the positive associations of vegetation activity with temperature and proposed a positive energy process for land–atmosphere interactions over the alpine grasslands in the western region of TP during the transition period from winter to spring.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eungul Lee, eungul.lee@khu.ac.kr

Supplementary Materials

    • Supplemental Materials (PDF 1.70 MB)
Save
  • Ahmad, W., A. U. Khan, F. A. Khan, M. Farooq, A. A. Baig, L. A. Shah, and J. Khan, 2020: How vegetation spatially alters the response of precipitation and air temperature? Evidence from Pakistan. Asian J. Atmos. Environ., 14, 133145, https://doi.org/10.5572/ajae.2020.14.2.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babel, W., and Coauthors, 2014: Pasture degradation modifies the water and carbon cycles of the Tibetan highlands. Biogeosciences, 11, 66336656, https://doi.org/10.5194/bg-11-6633-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, Q., Y. Liu, J. Shi, and G. Wu, 2010: Comparisons of soil moisture datasets over the Tibetan Plateau and application to the simulation of Asia summer monsoon onset. Adv. Atmos. Sci., 27, 303314, https://doi.org/10.1007/s00376-009-8132-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225, https://doi.org/10.1029/95JD02135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, https://doi.org/10.1126/science.1155121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., and D. W. Burbank, 2010: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res., 115, F03019, https://doi.org/10.1029/2009JF001426.

    • Search Google Scholar
    • Export Citation
  • Bounoua, L., R. DeFries, G. J. Collatz, P. Sellers, and H. Khan, 2002: Effects of land cover conversion on surface climate. Climatic Change, 52, 2964, https://doi.org/10.1023/A:1013051420309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyaj, A., H. P. Dasari, I. Hoteit, and K. Ashok, 2020: Increasing heavy rainfall events in south India due to changing land use and land cover. Quart. J. Roy. Meteor. Soc., 146, 30643085, https://doi.org/10.1002/qj.3826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., J. F. Adamowski, R. C. Deo, X. Xu, Y. Gong, and Q. Feng, 2019: Grassland degradation on the Qinghai-Tibetan Plateau: Reevaluation of causative factors. Rangeland Ecol. Manage., 72, 988995, https://doi.org/10.1016/j.rama.2019.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., D. Yu, M. Georgescu, Z. Han, and J. Wu, 2015: Impacts of land use and land cover change on regional climate: A case study in the agro-pastoral transitional zone of China. Environ. Res. Lett., 10, 124025, https://doi.org/10.1088/1748-9326/10/12/124025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, R., M. Shen, J. Zhou, and J. Chen, 2018: Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation. Agric. For. Meteor., 249, 176186, https://doi.org/10.1016/j.agrformet.2017.11.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193202, https://doi.org/10.1002/qj.49710142802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, T. N., R. A. Pielke, T. G. Kittel, R. Nemani, and S. W. Running, 1996: Sensitivity of a general circulation model to global changes in leaf area index. J. Geophys. Res., 101, 73937408, https://doi.org/10.1029/95JD02417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-J., C.-C. Chen, M.-H. Lo, J.-Y. Juang, and C.-M. Chang, 2020: Central Taiwan’s hydroclimate in response to land use/cover change. Environ. Res. Lett., 15, 034015, https://doi.org/10.1088/1748-9326/ab68aa.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., Q. Zhu, N. Wu, Y. Wang, and C.-H. Peng, 2011: Delayed spring phenology on the Tibetan Plateau may also be attributable to other factors than winter and spring warming. Proc. Natl. Acad. Sci. USA, 108, E93E93, https://doi.org/10.1073/pnas.1100091108.

    • Search Google Scholar
    • Export Citation
  • Chen, L., D. F. B. Flynn, X. Jing, P. Kühn, T. Scholten, and J.-S. He, 2015: A comparison of two methods for quantifying soil organic carbon of alpine grasslands on the Tibetan Plateau. PLOS ONE, 10, e0126372, https://doi.org/10.1371/journal.pone.0126372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, M., J. Jin, J. Zhang, H. Jiang, and R. Wang, 2018: Effect of climate change on vegetation phenology of different land-cover types on the Tibetan Plateau. Int. J. Remote Sens., 39, 470487, https://doi.org/10.1080/01431161.2017.1387308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleland, E., I. Chuine, A. Menzel, H. Mooney, and M. Schwartz, 2007: Shifting plant phenology in response to global change. Trends Ecol. Evol., 22, 357365, https://doi.org/10.1016/j.tree.2007.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colston, J. M., and Coauthors, 2018: Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study. Environ. Res., 165, 91109, https://doi.org/10.1016/j.envres.2018.02.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, X., and H.-F. Graf, 2009: Recent land cover changes on the Tibetan Plateau: A review. Climatic Change, 94, 4761, https://doi.org/10.1007/s10584-009-9556-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davey, C. A., R. A. Pielke Sr., and K. P. Gallo, 2006: Differences between near surface equivalent temperature and temperature trends for the eastern United States: Equivalent temperature as an alternative measure of heat content. Global Planet. Change, 54, 1932, https://doi.org/10.1016/j.gloplacha.2005.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 13811398, https://doi.org/10.1175/BAMS-87-10-1381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, A. P., D. Faber-Langendoen, C. Josse, J. Morrison, and C. J. Loucks, 2014: Distribution mapping of world grassland types. J. Biogeogr., 41, 20032019, https://doi.org/10.1111/jbi.12381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, E. M., D. Niyogi, S. Frolking, J. B. Yeluripati, R. A. Pielke, N. Niyogi, C. J. Vörösmarty, and U. C. Mohanty, 2006: Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian monsoon belt. Geophys. Res. Lett., 33, L14403, https://doi.org/10.1029/2006GL026550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, E. M., A. Beltrán-Przekurat, D. Niyogi, R. A. Pielke, and C. J. Vörösmarty, 2009: The impact of agricultural intensification and irrigation on land–atmosphere interactions and Indian monsoon precipitation—A mesoscale modeling perspective. Global Planet. Change, 67, 117128, https://doi.org/10.1016/j.gloplacha.2008.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., F. Li, M. Wang, and G. Wu, 2011: Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon. J. Climate, 24, 56715682, https://doi.org/10.1175/JCLI-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., G. Wu, Y. Liu, Y. Ma, and P. Zhao, 2012: Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci., 29, 978992, https://doi.org/10.1007/s00376-012-1220-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, J. L., M. B. Coughenour, and R. A. Pielke, 2001: The regional effects of CO2 and landscape change using a coupled plant and meteorological model. Global Change Biol., 7, 797815, https://doi.org/10.1046/j.1354-1013.2001.00411.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckert, S., F. Hüsler, H. Liniger, and E. Hodel, 2015: Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid Environ., 113, 1628, https://doi.org/10.1016/j.jaridenv.2014.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erdenebat, E., and T. Sato, 2018: Role of soil moisture-atmosphere feedback during high temperature events in 2002 over northeast Eurasia. Prog. Earth Planet. Sci., 5, 37, https://doi.org/10.1186/s40645-018-0195-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fall, S., N. S. Diffenbaugh, D. Niyogi, R. A. Pielke Sr., and G. Rochon, 2010: Temperature and equivalent temperature over the United States (1979–2005). Int. J. Climatol., 30, 20452054, https://doi.org/10.1002/joc.2094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foley, J. A., M. H. Costa, C. Delire, N. Ramankutty, and P. Snyder, 2003: Green surprise? How terrestrial ecosystems could affect Earth’s climate. Front. Ecol. Environ., 1, 3844, https://doi.org/10.1890/1540-9295(2003)001[0038:GSHTEC]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., and Coauthors, 2005: Global consequences of land use. Science, 309, 570574, https://doi.org/10.1126/science.1111772.

  • Freund, R. J., W. J. Wilson, and P. Sa, 2006: Regression Analysis: Statistical Modeling of a Response Variable. 2nd ed., Academic Press, 468 pp.

    • Search Google Scholar
    • Export Citation
  • Gao, J., W. Hou, K. Jiao, and S. Wu, 2016: Land-atmosphere interaction in the Southwestern Karst region of China. Land Degradation and Desertification—A Global Crisis, A. Kaswamila, Ed., IntechOpen, https://doi.org/10.5772/64740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y. C., and M. F. Liu, 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 837849, https://doi.org/10.5194/hess-17-837-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, F., F. Sielmann, X. Zhu, K. Fraedrich, X. Zhi, T. Peng, and L. Wang, 2017: The link between Tibetan Plateau monsoon and Indian summer precipitation: A linear diagnostic perspective. Climate Dyn., 49, 42014215, https://doi.org/10.1007/s00382-017-3585-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillespie, T. W., A. Madson, C. F. Cusack, and Y. Xue, 2019: Changes in NDVI and human population in protected areas on the Tibetan Plateau. Arct. Antarct. Alp. Res., 51, 428439, https://doi.org/10.1080/15230430.2019.1650541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, J., J. Li, J. Yang, S. Li, and W. Tang, 2017: Land use and land cover change in the Qinghai Lake Region of the Tibetan Plateau and its impact on ecosystem services. Int. J. Environ. Res. Public Health, 14, 818, https://doi.org/10.3390/ijerph14070818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Y., W. Ma, Y. Ma, and C. Sun, 2019: Variations of surface heat fluxes over the Tibetan Plateau before and after the onset of the South Asian summer monsoon during 1979–2016. J. Meteor. Res., 33, 491500, https://doi.org/10.1007/s13351-019-8616-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, R. B., 2010: Rangeland degradation on the Qinghai-Tibetan Plateau: A review of the evidence of its magnitude and causes. J. Arid Environ., 74, 112, https://doi.org/10.1016/j.jaridenv.2009.06.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Y., T. Warner, B. McNeil, and E. Lee, 2018: Reducing uncertainties in applying remotely sensed land use and land cover maps in land-atmosphere interaction: Identifying change in space and time. Remote Sens., 10, 506, https://doi.org/10.3390/rs10040506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Y., E. Lee, and J. S. Mankin, 2020: Seasonal tropospheric cooling in Northeast China associated with cropland expansion. Environ. Res. Lett., 15, 034032, https://doi.org/10.1088/1748-9326/ab6616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Holben, B. N., 1986: Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens., 7, 14171434, https://doi.org/10.1080/01431168608948945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, G., and Coauthors, 2018: Soil infiltration processes of different underlying surfaces in the permafrost region on the Tibetan Plateau. Hydrol. Sci. J., 63, 17331744, https://doi.org/10.1080/02626667.2018.1500745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, T., and X. Wang, 2018: Temporal and spatial variations in the climate controls of vegetation dynamics on the Tibetan Plateau during 1982–2011. Adv. Atmos. Sci., 35, 13371346, https://doi.org/10.1007/s00376-018-7064-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, K., Y. Zhang, J. Zhu, Y. Liu, J. Zu, and J. Zhang, 2016: The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sens., 8, 876, https://doi.org/10.3390/rs8100876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., T. Zhang, G. Yi, D. He, X. Zhou, J. Li, X. Bie, and J. Miao, 2019: Dynamic changes of NDVI in the growing season of the Tibetan Plateau during the past 17 years and its response to climate change. Int. J. Environ. Res. Public Health, 16, 3452, https://doi.org/10.3390/ijerph16183452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., and W. R. Boos, 2013: Interannual variability of monsoon precipitation and local subcloud equivalent potential temperature. J. Climate, 26, 95079527, https://doi.org/10.1175/JCLI-D-12-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ibrahim, Y. Z., H. Balzter, J. Kaduk, and C. J. Tucker, 2015: Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in sub-Saharan West Africa from 1982 to 2012. Remote Sens., 7, 54715494, https://doi.org/10.3390/rs70505471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, H., D. Luo, S. Wang, L. , and J. Wu, 2011: Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau. Sci. Cold Arid. Reg., 3, 281305, https://doi.org/10.3724/SP.J.1226.2011.00281.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, X., and J. J. Jiao, 2016: Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos., 121, 39794007, https://doi.org/10.1002/2015JD024728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, E., and Y. He, 2018: Could the enhanced forests reduce summer warming in the Southern China? J. Climate Res., 13, 345359, https://doi.org/10.14383/cri.2018.13.4.345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, E., T. N. Chase, and B. Rajagopalan, 2008: Highly improved predictive skill in the forecasting of the East Asian summer monsoon: A new forecast model of the East Asian summer monsoon. Water Resour. Res., 44, W10422, https://doi.org/10.1029/2007WR006514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, E., T. N. Chase, B. Rajagopalan, R. G. Barry, T. W. Biggs, and P. J. Lawrence, 2009: Effects of irrigation and vegetation activity on early Indian summer monsoon variability. Int. J. Climatol., 29, 573581, https://doi.org/10.1002/joc.1721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, E., Y. He, M. Zhou, and J. Liang, 2015: Potential feedback of recent vegetation changes on summer rainfall in the Sahel. Phys. Geogr., 36, 449470, https://doi.org/10.1080/02723646.2015.1120139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmann, E. L., 1975: Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, 457 pp.

  • Li, N., P. Zhao, J. Wang, and Y. Deng, 2020: The long-term change of latent heat flux over the western Tibetan Plateau. Atmosphere, 11, 262, https://doi.org/10.3390/atmos11030262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., J. Liao, H. Guo, Z. Liu, and G. Shen, 2014: Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972–2010. PLOS ONE, 9, e111890, https://doi.org/10.1371/journal.pone.0111890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., G. You, R. Li, W. Shen, Y. Yue, and N. Lin, 2015: Spectral characteristics of alpine grassland and their changes responding to grassland degradation on the Tibetan Plateau. Environ. Earth Sci., 74, 21152123, https://doi.org/10.1007/s12665-015-4196-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., F. Cheng, S. Dong, H. Zhao, X. Hou, and X. Wu, 2017: Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI. Sci. Rep., 7, 4182, https://doi.org/10.1038/s41598-017-04038-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and B. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., M. Lu, H. Yang, A. Duan, B. He, S. Yang, and G. Wu, 2020: Land–atmosphere–ocean coupling associated with the Tibetan Plateau and its climate impacts. Natl. Sci. Rev., 7, 534552, https://doi.org/10.1093/nsr/nwaa011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., S. Kang, L. Zhu, B. Xu, L. Tian, and T. Yao, 2008: Tibetan observation and research platform: Atmosphere–land interactions over a heterogeneous landscape. Bull. Amer. Meteor. Soc., 89, 14871492, https://doi.org/10.1175/1520-0477-89.10.1469.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., and Coauthors, 2017: Monitoring and modeling the Tibetan Plateau’s climate system and its impact on East Asia. Sci. Rep., 7, 44574, https://doi.org/10.1038/srep44574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., and Coauthors, 2020: A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau. Earth Syst. Sci. Data, 12, 29372957, https://doi.org/10.5194/essd-12-2937-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., and Coauthors, 2021: Determination of land surface heat fluxes at different temporal scales over the Tibetan Plateau. J. Geod. Geoinf. Sci., 4, 144152, https://doi.org/10.11947/j.JGGS.2021.0116.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and Coauthors, 2014: Land cover changes and their biogeophysical effects on climate: Land cover changes and their biogeophysical effects on climate. Int. J. Climatol., 34, 929953, https://doi.org/10.1002/joc.3736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., D. L. Schumacher, H. Wouters, J. Muñoz-Sabater, N. E. C. Verhoest, and D. G. Miralles, 2020: Evaluating the surface energy partitioning in ERA5. Geosci. Model Dev., 13, 41594181, https://doi.org/10.5194/gmd-13-4159-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, T. Mölg, E. Collier, J. Curio, and R. Finkelnburg, 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J. Climate, 27, 19101927, https://doi.org/10.1175/JCLI-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazhar, U., S. Jin, W. Duan, and M. Bilal, 2021: Spatio-temporal trends of surface energy budget in Tibet from satellite remote sensing observations and reanalysis data. Remote Sens., 13, 256, https://doi.org/10.3390/rs13020256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, L., D. Long, S. M. Quiring, and Y. Shen, 2014: Statistical analysis of the relationship between spring soil moisture and summer precipitation in East China. Int. J. Climatol., 34, 15111523, https://doi.org/10.1002/joc.3780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morawitz, D. F., T. M. Blewett, A. Cohen, and M. Alberti, 2006: Using NDVI to assess vegetative land cover change in central Puget Sound. Environ. Monit. Assess., 114, 85106, https://doi.org/10.1007/s10661-006-1679-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemani, R. R., 2003: Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 15601563, https://doi.org/10.1126/science.1082750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niyogi, D., C. Kishtawal, S. Tripathi, and R. S. Govindaraju, 2010: Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall: Agricultural intensification and monsoon rainfall. Water Resour. Res., 46, 100145, https://doi.org/10.1029/2008WR007082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2021: Details and instructions on the monthly mean compositing page. Accessed 7 July 2021, https://psl.noaa.gov/data/composites/details.html.

    • Search Google Scholar
    • Export Citation
  • Peng, D. L., B. Zhou, C. J. Li, W. J. Huang, Y. P. Wu, and X. H. Yang, 2014: Phenological characteristics of the main vegetation types on the Tibetan Plateau based on vegetation and water indices. IOP Conf. Ser. Earth Environ. Sci., 17, 012077, https://doi.org/10.1088/1755-1315/17/1/012077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., Z. Liu, Y. Liu, J. Wu, and Y. Han, 2012: Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst exponent. Ecol. Indic., 14, 2839, https://doi.org/10.1016/j.ecolind.2011.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev., 102, 115139, https://doi.org/10.1175/1520-0493(1974)102<0115:ATDNMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2005: Land use and climate change. Science, 310, 16251626, https://doi.org/10.1126/science.1120529.

  • Pielke, R. A., and D. Niyogi, 2009: The role of landscape processes within the climate system. Landform—Structure, Evolution, Process Control, J.-C. Otto and R. Dikau, Eds., Lecture Notes in Earth Sciences, Vol. 115, Springer, 6785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., R. I. Avissar, M. Raupach, A. J. Dolman, X. Zeng, and A. S. Denning, 1998: Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biol., 4, 461475, https://doi.org/10.1046/j.1365-2486.1998.t01-1-00176.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, https://doi.org/10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., R. Mahmood, and C. McAlpine, 2016: Land’s complex role in climate change. Phys. Today, 69, 4046, https://doi.org/10.1063/PT.3.3364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinzon, J., and C. Tucker, 2014: A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens., 6, 69296960, https://doi.org/10.3390/rs6086929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prince, S. D., I. Becker-Reshef, and K. Rishmawi, 2009: Detection and mapping of long-term land degradation using local net production scaling: Application to Zimbabwe. Remote Sens. Environ., 113, 10461057, https://doi.org/10.1016/j.rse.2009.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, M., and Coauthors, 2015: Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA, 112, 92999304, https://doi.org/10.1073/pnas.1504418112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Q., and S. Liang, 2014: Surface sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data. Atmos. Chem. Phys., 14, 56595677, https://doi.org/10.5194/acp-14-5659-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shull, N., and E. Lee, 2019: April vegetation dynamics and forest–climate interactions in central Appalachia. Atmosphere, 10, 765, https://doi.org/10.3390/atmos10120765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, P. K., 2010: The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interact., 14, https://doi.org/10.1175/2010EI280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, P. K., C. Delire, and J. A. Foley, 2004: Evaluating the influence of different vegetation biomes on the global climate. Climate Dyn., 23, 279302, https://doi.org/10.1007/s00382-004-0430-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., Q. Zhuang, Y. Yin, X. Zhu, and S. Wu, 2017: Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010. Environ. Res. Lett., 12, 014011, https://doi.org/10.1088/1748-9326/aa527d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., G. K. Walker, J.-H. Kim, G. E. Liston, P. J. Sellers, and W. K.-M. Lau, 1996: Biogeophysical consequences of a tropical deforestation scenario: A GCM simulation study. J. Climate, 9, 32253247, https://doi.org/10.1175/1520-0442(1996)009<3225:BCOATD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, G., Z. Hu, F. Sun, J. Wang, Z. Xie, Y. Lin, and F. Huang, 2017: An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan Plateau based on Eddy covariance and large aperture scintillometer data. Theor. Appl. Climatol., 129, 965976, https://doi.org/10.1007/s00704-016-1809-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S. Y., and Y. H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 2330, https://doi.org/10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, K., F. Su, D. Yang, and Z. Hao, 2014: Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol., 519, 423437, https://doi.org/10.1016/j.jhydrol.2014.07.044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., and P. J. Sellers, 1986: Satellite remote sensing of primary production. Int. J. Remote Sens., 7, 13951416, https://doi.org/10.1080/01431168608948944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., J. E. Pinzon, M. E. Brown, D. A. Slayback, E. W. Pak, R. Mahoney, E. F. Vermote, and N. El Saleous, 2005: An extended AVHRR 8-km NDVI dataset compatible with and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 44854498, https://doi.org/10.1080/01431160500168686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, S., and G. Salvucci, 2016: Empirical evidence of contrasting soil moisture-precipitation feedbacks across the United States. Science, 352, 825828, https://doi.org/10.1126/science.aaa7185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walpole, R. E., R. H. Myers, S. L. Myers, and K. Ye, 1993: Probability and Statistics for Engineers and Scientists. Macmillan, 812 pp.

  • Wang, C., 2016: A remote sensing perspective of alpine grasslands on the Tibetan Plateau: Better or worse under “Tibet warming”? Remote Sens. Appl.: Soc. Environ., 3, 3644, https://doi.org/10.1016/j.rsase.2015.12.002.

    • Search Google Scholar
    • Export Citation
  • Wang, H., D. Liu, H. Lin, A. Montenegro, and X. Zhu, 2015: NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan Plateau. Int. J. Climatol., 35, 687698, https://doi.org/10.1002/joc.4013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., B. Zhang, Q. Yang, G. Chen, B. Yang, L. Lu, M. Shen, and Y. Peng, 2017: Responses of net primary productivity to phenological dynamics in the Tibetan Plateau, China. Agric. For. Meteor., 232, 235246, https://doi.org/10.1016/j.agrformet.2016.08.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2016: Quantitative assess the driving forces on the grassland degradation in the Qinghai–Tibet Plateau, in China. Ecol. Inf., 33, 3244, https://doi.org/10.1016/j.ecoinf.2016.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., J. Wu, B. Niu, Y. He, J. Zu, M. Li, and X. Zhang, 2020: Vegetation expansion on the Tibetan Plateau and its relationship with climate change. Remote Sens., 12, 4150, https://doi.org/10.3390/rs12244150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, X., C. Yan, and W. Wei, 2019: Grassland dynamics and the driving factors based on net primary productivity in Qinghai Province, China. Int. J. Geo-Inf., 8, 73, https://doi.org/10.3390/ijgi8020073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, X., C. Liu, and S. Luo, 2020: Comparative analysis of water-energy cycle processes based on high-resolution assimilation dataset of the water-energy cycle in China data over different underlying surfaces in Qinghai-Tibet Plateau. Front. Earth Sci., 8, 576461, https://doi.org/10.3389/feart.2020.576461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., Q. Zhang, A. Li, and C. Liang, 2015: Historical landscape dynamics of Inner Mongolia: Patterns, drivers, and impacts. Landscape Ecol., 30, 15791598, https://doi.org/10.1007/s10980-015-0209-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., J. Li, Z. Jiang, and T. Ma, 2012: Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: From the East Asian summer monsoon perspective. J. Climate, 25, 24812489, https://doi.org/10.1175/JCLI-D-11-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., P. Zhang, H. Chen, and Y. Li, 2016: Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency? Climate Dyn., 46, 34053417, https://doi.org/10.1007/s00382-015-2775-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., and A. Duan, 2016: Impacts of Tibetan Plateau snow cover on the interannual variability of the East Asian summer monsoon. J. Climate, 29, 84958514, https://doi.org/10.1175/JCLI-D-16-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, J., Y. Yu, J. Li, J. Ge, and C. Liu, 2019: Comparison of surface sensible and latent heat fluxes over the Tibetan Plateau from reanalysis and observations. Meteor. Atmos. Phys., 131, 567584, https://doi.org/10.1007/s00703-018-0595-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., J. Qu, X. Xu, and Y. Pang, 2017: Interactions between freeze-thaw actions, wind erosion desertification, and permafrost in the Qinghai-Tibet Plateau. Nat. Hazards, 85, 829850, https://doi.org/10.1007/s11069-016-2606-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z. F., X. Z. Pu, H. J. Yin, C. Z. Zhao, Q. Liu, and F. Z. Wu, 2012: Warming effects on the early decomposition of three litter types, eastern Tibetan Plateau, China. Eur. J. Soil Sci., 63, 360367, https://doi.org/10.1111/j.1365-2389.2012.01449.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, X., J. Guo, B. Han, Q. Sun, and L. Liu, 2009: The effect of climate warming and permafrost thaw on desertification in the Qinghai–Tibetan Plateau. Geomorphology, 108, 182190, https://doi.org/10.1016/j.geomorph.2009.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, D., and Coauthors, 2020: Integrating remote sensing data with WRF Model for improved 2-m temperature and humidity simulations in China. Dyn. Atmos. Oceans, 89, 101127, https://doi.org/10.1016/j.dynatmoce.2019.101127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, https://doi.org/10.1016/j.gloplacha.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., G. Sun, L. Zhi, and J. Zhao, 2018: Negative soil moisture-precipitation feedback in dry and wet regions. Sci. Rep., 8, 4026, https://doi.org/10.1038/s41598-018-22394-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Younger, K., R. Mahmood, G. Goodrich, R. A. Pielke, and J. Durkee, 2019: Mesoscale surface equivalent temperature (TE) for east central USA. Theor. Appl. Climatol., 136, 6575, https://doi.org/10.1007/s00704-018-2468-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., L. Wu, G. Huang, W. Zhu, and Y. Zhang, 2011: The role of May vegetation greenness on the southeastern Tibetan Plateau for East Asian summer monsoon prediction. J. Geophys. Res., 116, D05106, https://doi.org/10.1029/2010JD015095.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., R. Mahmood, X. Lin, and R. A. Pielke, 2019: Irrigation impacts on minimum and maximum surface moist enthalpy in the central Great Plains of the USA. Wea. Climate Extremes, 23, 100197, https://doi.org/10.1016/j.wace.2019.100197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 27802793, https://doi.org/10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., C. Zhang, Z. Wang, Y. Chen, C. Gang, R. An, and J. Li, 2016: Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ., 563–564, 210220, https://doi.org/10.1016/j.scitotenv.2016.03.223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, L., and Coauthors, 2020: Association of diurnal rainfall in northeastern Tibetan Plateau with the retreat of the South Asian high. Atmosphere, 11, 105, https://doi.org/10.3390/atmos11010105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, L., Y. Ma, Y. Xue, and S. Piao, 2019: Climate change trends and impacts on vegetation greening over the Tibetan Plateau. J. Geophys. Res. Atmos., 124, 75407552, https://doi.org/10.1029/2019JD030481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., J. Fan, and X. Wang, 2020: Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau. PLOS ONE, 15, e0234848, https://doi.org/10.1371/journal.pone.0234848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Coauthors, 2013: Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens., 5, 927948, https://doi.org/10.3390/rs5020927.

    • Search Google Scholar
    • Export Citation
  • Zuo, Z., and R. Zhang, 2016: Influence of soil moisture in eastern China on the East Asian summer monsoon. Adv. Atmos. Sci., 33, 151163, https://doi.org/10.1007/s00376-015-5024-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2 0 0
Full Text Views 4526 2724 157
PDF Downloads 993 155 25