Characterizing Vegetation Fire Dynamics in Brazil through Multisatellite Data: Common Trends and Practical Issues

Wilfrid Schroeder Department of Geography, University of Maryland, College Park, Maryland

Search for other papers by Wilfrid Schroeder in
Current site
Google Scholar
PubMed
Close
,
Jeffrey T. Morisette NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Jeffrey T. Morisette in
Current site
Google Scholar
PubMed
Close
,
Ivan Csiszar Department of Geography, University of Maryland, College Park, Maryland

Search for other papers by Ivan Csiszar in
Current site
Google Scholar
PubMed
Close
,
Louis Giglio Science Systems and Applications, Inc., NASA GSFC, Greenbelt, Maryland

Search for other papers by Louis Giglio in
Current site
Google Scholar
PubMed
Close
,
Douglas Morton Department of Geography, University of Maryland, College Park, Maryland

Search for other papers by Douglas Morton in
Current site
Google Scholar
PubMed
Close
, and
Christopher O. Justice Department of Geography, University of Maryland, College Park, Maryland

Search for other papers by Christopher O. Justice in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Correctly characterizing the frequency and distribution of fire occurrence is essential for understanding the environmental impacts of biomass burning. Satellite fire detection is analyzed from two sensors—the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-12 and the Moderate Resolution Imaging Spectroradiometer (MODIS) on both the Terra and Aqua platforms, for 2001–03—to characterize fire activity in Brazil, giving special emphasis to the Amazon region. In evaluating the daily fire counts, their dependence on variations in satellite viewing geometry, overpass time, atmospheric conditions, and fire characteristics were considered. Fire counts were assessed for major biomes of Brazil, the nine states of the Legal Amazon, and two important road corridors in the Amazon region. All three datasets provide consistent information on the timing of peak fire activity for a given state. Also, ranking by relative fire counts per unit area highlights the importance of fire in smaller biomes such as Complexo do Pantanal. The local analysis of road corridors shows trends for fire detections with the increasing intensity of land use. Although absolute fire counts differ by as much as 1200%, when summarized over space and time, trends in fire counts among the three datasets show clear patterns of fire dynamics. The fire dynamics that are evident in these trend analyses are important foundations for assessing environmental impacts of biomass burning and policy measures to manage fire in Brazil.

* Corresponding author address: Wilfrid Schroeder, Department of Geography, University of Maryland, College Park, College Park, MD 20742. schroeder@hermes.geog.umd.edu

This article included in the Large-Scale Biosphere-Atmosphere (LBA) Experiment special collection.

Abstract

Correctly characterizing the frequency and distribution of fire occurrence is essential for understanding the environmental impacts of biomass burning. Satellite fire detection is analyzed from two sensors—the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-12 and the Moderate Resolution Imaging Spectroradiometer (MODIS) on both the Terra and Aqua platforms, for 2001–03—to characterize fire activity in Brazil, giving special emphasis to the Amazon region. In evaluating the daily fire counts, their dependence on variations in satellite viewing geometry, overpass time, atmospheric conditions, and fire characteristics were considered. Fire counts were assessed for major biomes of Brazil, the nine states of the Legal Amazon, and two important road corridors in the Amazon region. All three datasets provide consistent information on the timing of peak fire activity for a given state. Also, ranking by relative fire counts per unit area highlights the importance of fire in smaller biomes such as Complexo do Pantanal. The local analysis of road corridors shows trends for fire detections with the increasing intensity of land use. Although absolute fire counts differ by as much as 1200%, when summarized over space and time, trends in fire counts among the three datasets show clear patterns of fire dynamics. The fire dynamics that are evident in these trend analyses are important foundations for assessing environmental impacts of biomass burning and policy measures to manage fire in Brazil.

* Corresponding author address: Wilfrid Schroeder, Department of Geography, University of Maryland, College Park, College Park, MD 20742. schroeder@hermes.geog.umd.edu

This article included in the Large-Scale Biosphere-Atmosphere (LBA) Experiment special collection.

Save
  • Artaxo, P., E. T. Fernandes, J. V. Martins, M. A. Yamasoe, P. V. Hobbs, W. Maenhaut, K. M. Longo, and A. Castanho. 1998. Large-scale aerosol source apportionment in Amazonia. J. Geophys. Res. 103:D24,. 3183731847.

    • Search Google Scholar
    • Export Citation
  • Belward, A. S. Coauthors 1993. In-situ, real-time fire detection using NOAA-AVHRR data. Proceedings, Sixth AVHRR Data Users’ Meeting, Belgirate, Italy, EUMETSAT JRC, 333–339.

  • Brustet, J. M., J. B. Vickos, J. Fontan, K. Manissadjan, A. Podaire, and F. Lavenu. 1991. Remote sensing of biomass burning in West Africa with NOAA-AVHRR. Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, Ed., MIT Press, 47–52.

    • Search Google Scholar
    • Export Citation
  • Cardoso, M., G. C. Hurtt, B. Moore, C. Nobre, and E. Prins. 2003. Projecting future fire activity in Amazonia. Global Change Biol. 9:656669.

    • Search Google Scholar
    • Export Citation
  • Cochrane, M. 2001. Synergistic interactions between habitat fragmentation and fire in evergreen tropical forests. Conserv. Biol. 15:15151521.

    • Search Google Scholar
    • Export Citation
  • Cochrane, M. and M. Schulze. 1998. Forest fires in the Brazilian Amazon. Conserv. Biol. 12:948950.

  • Cochrane, M. A., A. Alencar, M. D. Schulze, C. M. Souza Jr., D. C. Nepstad, P. Lefebvre, and E. A. Davidson. 1999. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:18321835.

    • Search Google Scholar
    • Export Citation
  • Crutzen, P. and M. O. Andreae. 1990. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250:16691678.

    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J. Coauthors 1985. Tropospheric chemical composition measurements in Brazil during the dry season. J. Atmos. Chem. 2:233256.

    • Search Google Scholar
    • Export Citation
  • Csiszar, I. and J. Sullivan. 2002. Recalculated pre-launch saturation temperatures of the AVHRR 3.7 μm sensors on board the TIROS-N to NOAA–14 satellites. Int. J. Remote Sens. 23:52715276.

    • Search Google Scholar
    • Export Citation
  • Dwyer, E., S. Pinnock, J-M. Grégroire, and J. M. C. Pereira. 2000. Global spatial and temporal distribution of vegetation fire as determined from satellite observations. Int. J. Remote Sens. 21:12891302.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., B. N. Holben, I. Slutsker, and A. Setzer. 1998. Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for biomass burning aerosols in Amazonia. J. Geophys. Res. 103:D24,. 3186531878.

    • Search Google Scholar
    • Export Citation
  • Elvidge, C. D., H. W. Kroehl, E. A. Kihn, K. E. Baugh, E. R. Davis, and W. M. Hao. 1996. Algorithm for the retrieval of fire pixels from DMSP Operational Linescan System Data. Remote Sensing, Modeling and Inventory Development, and Biomass Burning in Africa, J. S. Levine, Ed., Vo. 1, Biomass Burning and Global Change, MIT Press, 73–85.

    • Search Google Scholar
    • Export Citation
  • Elvidge, C. D., V. R. Hobson, K. E. Baugh, J. B. Dietz, Y. Shimabukuro, T. Krug, E. M. L. M. Novo, and F. R. Echavarria. 2001. DMSP-OLS estimation of tropical forest area impacted by surface fires in Roraima, Brazil: 1995 versus 1998. Int. J. Remote Sens. 22:26612673.

    • Search Google Scholar
    • Export Citation
  • Eva, H. and S. Fritz. 2003. Examining the potential of using remotely sensed fire data to predict areas of rapid forest change in South America. Appl. Geogr. 23:189204.

    • Search Google Scholar
    • Export Citation
  • Ferreira, L. G., H. Yoshioka, A. Huete, and E. E. Sano. 2003. Seasonal landscape and spectral vegetation index dynamics in the Brazilian Cerrado: An analysis within the Large-Scale Biosphere-Atmosphere Experiment in Amazônia (LBA). Remote Sens. Environ. 87:534550.

    • Search Google Scholar
    • Export Citation
  • Figueroa, S. N. and C. A. Nobre. 1990. Precipitation distribution over central and western tropical South America. Climanálise, Vol. 5, No. 6, CPTEC/INPE, 36–45.

  • França, H. and A. W. Setzer. 2001. AVHRR analysis of a savanna site through a fire season in Brazil. Int. J. Remote Sens. 22:24492461.

    • Search Google Scholar
    • Export Citation
  • França, J. R. A., J-M. Brustet, and J. Fontan. 1995. Multispectral remote sensing of biomass burning in west Africa. J. Atmos. Chem. 22:81110.

    • Search Google Scholar
    • Export Citation
  • Giglio, L., J. D. Kendall, and C. O. Justice. 1999. Evaluation of global fire detection algorithms using simulated AVHRR infrared data. Int. J. Remote Sens. 20:19471985.

    • Search Google Scholar
    • Export Citation
  • Giglio, L., J. D. Kendall, and C. J. Tucker. 2000. Remote sensing of fires with the TRMM VIRS. Int. J. Remote Sens. 21:203207.

  • Giglio, L., J. Descloitres, C. O. Justice, and Y. Kaufman. 2003. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 47:13111318.

    • Search Google Scholar
    • Export Citation
  • Gutman, G., C. Elvidge, I. Csiszar, and P. Romanov. 2001. NOAA archives of data from meteorological satellites useful for fire products. Global and Regional Wildfire Monitoring from Space: Planning a Coordinated International Effort, F. Ahern, J. Goldammer, and C. O. Juctice, Eds., SPB Academic Publishing, 257–266.

    • Search Google Scholar
    • Export Citation
  • Hao, M. and M-H. Liu. 1994. Spatial and temporal distribution of tropical biomass burning. Global Biol. Cycles 8:495503.

  • Hoffmann, W. A., W. Schroeder, and R. B. Jackson. 2002. Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna. Geophys. Res. Lett. 29.2052, doi:10.1029/2002GL015424.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, W. A., W. Schroeder, and R. B. Jackson. 2003. Regional feedbacks among fire, climate and tropical deforestation. J. Geophys. Res. 108.4721, doi:10.1029/2003JD003494.

    • Search Google Scholar
    • Export Citation
  • Justice, C. O. Coauthors 1998. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 36:12281249.

    • Search Google Scholar
    • Export Citation
  • Justice, C. O. Coauthors 2002. The MODIS fire products. Remote Sens. Environ. 83:244262.

  • Kaufman, Y. J., C. J. Tucker, and I. Fung. 1990. Remote sensing of biomass burning in the tropics. J. Geophys. Res. 95:99279939.

  • Kaufman, Y. J., A. Setzer, D. E. Ward, D. Tanre, B. N. Holben, P. Menzel, M. C. Pereira, and R. Rasmussen. 1992. Biomass burning airborne and spaceborne experiment in the Amazon (BASE-A). J. Geophys. Res. 97:1458114599.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., C. Justice, L. Flynn, J. Kendall, E. M. Prins, D. E. Ward, and A. Setzer. 1998a. Potential global fire monitoring from EOS-MODIS. J. Geophys. Res. 103:3221532238.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J. Coauthors 1998b. Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment. J. Geophys. Res. 103:D24,. 3178331808.

  • Kidwell, K. B. 1991. NOAA Polar Orbiter user’s guide. NOAA/NESDIS.

  • Laurance, W. F. 2003. Slow burn: The insidious effects of surface fires on tropical forests. Trends Ecol. Evol. 18:209212.

  • Laurance, W. F., A. K. M. Albernaz, and C. Da Costa. 2001. Is deforestation accelerating in the Brazilian Amazon? Environ. Conserv. 28:305311.

    • Search Google Scholar
    • Export Citation
  • Laurance, W. F., A. K. M. Albernaz, G. Schroth, P. M. Fearnside, S. Bergen, E. M. Venticinque, and C. Da Costa. 2002. Predictors of deforestation in the Brazilian Amazon. J. Biogeogr. 29:737748.

    • Search Google Scholar
    • Export Citation
  • Lenoble, J. 1991. The particulate matter from biomass burning: A tutorial and critical review of its radiative impact. Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, Ed., MIT Press, 381–386.

    • Search Google Scholar
    • Export Citation
  • Li, Z., S. Wandon, and J. Cihlar. 2000. Satellite-based detection of Canadian boreal forest fires: Development and application of the algorithm. Int. J. Remote Sens. 21:30573069.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. J. Kaufman, C. Ichoku, R. Fraser, A. Trishchenko, L. Giglio, J-Z. Jin, and X. Yu. 2001. A review of AVHRR-based fire detection algorithms: Principles, limitation, sand recommendations. Global and Regional Wildfire Monitoring from Space: Planning a Coordinated International Effort, F. Ahern, J. Goldammer, and C. O. Juctice, Eds., SPB Academic Publishing, 199–225.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., E. C. Cutrim, and E. M. Prins. 1991. Geostationary satellite estimation of biomass burning in Amazonia during BASE-A. Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, Ed., MIT Press, 41–46.

    • Search Google Scholar
    • Export Citation
  • Montgomery, D. C. 2001. Design and Analysis of Experiments. 5th ed. John Wiley and Sons, 684 pp.

  • Morisette, J. T., L. Giglio, I. Csiszar, A. Setzer, W. Schroeder, D. Morton, and C. O. Justice. 2005. Validation of MODIS active fire detection products derived from two algorithms. Earth Interactions in press.

    • Search Google Scholar
    • Export Citation
  • Nepstad, D. C. Coauthors 1999. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505508.

  • Nobre, C. A., L. F. Mattos, C. P. Dereczynski, T. A. Tarasova, and I. V. Trosnikov. 1998. Overview of atmospheric conditions during the Smoke, Clouds, and Radiation-Brazil (SCAR-B) field experiment. J. Geophys. Res. 103:D24,. 3180931820.

    • Search Google Scholar
    • Export Citation
  • Phulpin, T., F. Lavenu, M. F. Bellan, B. Mougenot, and F. Blasco. 2002. Using SPOT-4 HRVIR and VEGETATION sensors to asses impact of tropical forest fires in Roraima, Brazil. Int. J. Remote Sens. 23:19431966.

    • Search Google Scholar
    • Export Citation
  • Price, J. C. 1991. Timing of NOAA afternoon passes. Int. J. Remote Sens. 12:193198.

  • Prins, E. M., J. M. Feltz, W. P. Menzel, and D. E. Ward. 1998. An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. J. Geophys. Res. 103:D24,. 3182131835.

    • Search Google Scholar
    • Export Citation
  • Randriambelo, T., S. Baldy, M. Bessafi, M. Petit, and M. Despinoy. 1998. An improved detection and characterization of active fires and smoke plumes in South-Eastern Africa and Madagascar. Int. J. Remote Sens. 19:26232638.

    • Search Google Scholar
    • Export Citation
  • Reinhardt, T. E., R. D. Ottmar, and C. Castilla. 2001. Smoke impacts from agricultural burning in rural Brazilian Town. J. Air Waste Manage. 51:443450.

    • Search Google Scholar
    • Export Citation
  • Ross, J. L. and P. V. Hobbs. 1998. Radiative characteristics of regional hazes dominated by smoke from biomass burning in Brazil: Closure tests and direct radiative forcing. J. Geophys. Res. 103:D24,. 3192531941.

    • Search Google Scholar
    • Export Citation
  • Schroeder, W., J. A. R. Pereira, J. T. Morisette, I. Csiszar, P. Riggan, and J. W. Hoffman. 2002. A description of the “Firemapper™” airborne sensor validation campaigns in Brazil for quantifying the accuracy of MODIS fire products. Earth Observer, Vol. 14, No. 6, Earth Observing System, 38–42.

  • Setzer, A. W. and M. C. Pereira. 1991. Operational detection of fires in Brazil with NOAA/AVHRR. 24th Int. Symp. on Remote Sensing of the Environment, Rio de Janeiro, Brazil, ERIM, 469–482.

  • Setzer, A. W. and J. P. Malingreau. 1996. AVHRR monitoring of vegetation fires in the Tropics: Toward the development of a global product. Remote Sensing, Modeling and Inventory Development, and Biomass Burning in Africa, J. S. Levine, Ed., Vol. 1, Biomass Burning and Global Change, MIT Press, 25–39.

    • Search Google Scholar
    • Export Citation
  • Setzer, A. W., A. C. Pereira Jr., and M. C. Pereira. 1994. Satellite studies of biomass burning in Amazonia: Some practical aspects. Remote Sens. Rev. 10:91103.

    • Search Google Scholar
    • Export Citation
  • Stroppiana, D., S. Pinnock, and J-M. Grégoire. 2000. The global fire product: Daily fire occurrence from April 1992 to December 1993 derived from NOAA AVHRR data. Int. J. Remote Sens. 21:12791288.

    • Search Google Scholar
    • Export Citation
  • Ward, D. E. Coauthors 1992. Emissions and burning characteristics of biomass fires for cerrado and tropical forest regions of Brazil-BASE-B experiment. J. Geophys. Res. 97:1460114619.

    • Search Google Scholar
    • Export Citation
  • Wolfe, R. E., M. Nishihama, A. J. Fleig, J. A. Kuyper, D. P. Roy, J. C. Storey, and F. S. Patt. 2002. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 83:3149.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7946 6444 262
PDF Downloads 513 110 6