• Adegoke, J. O., R. Pielke, and A. M. Carleton, 2007: Observational and modeling studies of the impacts of agriculture-related land use change on planetary boundary layer processes in the central US. Agric. For. Meteor., 142, 203215, https://doi.org/10.1016/j.agrformet.2006.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aegerter, C., and et al. , 2017: Mesoscale modeling of the meteorological impacts of irrigation during the 2012 central plains drought. J. Appl. Meteor. Climatol., 56, 12591283, https://doi.org/10.1175/JAMC-D-16-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierwagen, B. G., D. M. Theobald, C. R. Pyke, A. Choate, P. Groth, J. V. Thomas, and P. Morefield, 2010: National housing and impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. USA, 107, 20 88720 892, https://doi.org/10.1073/pnas.1002096107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., R. S. DeFries, M. T. Coe, and D. S. Ojima, 2004: Land use and climate. Land Change Sciences, G. Gutman et al., Eds., Kluwer Academic, 301–314.

    • Crossref
    • Export Citation
  • Bounoua, L., G. J. Collatz, S. O. Los, P. J. Sellers, D. A. Dazlich, C. J. Tucker, and D. A. Randall, 2000: Sensitivity of climate to changes in NDVI. J. Climate, 13, 22772292, https://doi.org/10.1175/1520-0442(2000)013<2277:SOCTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broxton, P. D., X. Zeng, D. Sulla-Menashe, and P. A. Troch, 2014: A global land cover climatology using MODIS data. J. Appl. Meteor. Climatol., 53, 15931605, https://doi.org/10.1175/JAMC-D-13-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., and P. A. Dirmeyer, 2017: Impacts of land-use/land-cover change on afternoon precipitation over North America. J. Climate, 30, 21212140, https://doi.org/10.1175/JCLI-D-16-0589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., P. A. Dirmeyer, A. Tawfik, and D. M. Lawrence, 2017: Sensitivities of land cover–precipitation feedback to convective triggering. J. Hydrometeor., 18, 22652283, https://doi.org/10.1175/JHM-D-17-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, M. H., S. N. M. Yanagi, P. J. O. P. Souza, A. Ribeiro, and E. J. P. Rocha, 2007: Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophys. Res. Lett., 34, L07706, https://doi.org/10.1029/2007GL029271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuntz, M., J. Mai, L. Samaniego, M. Clark, V. Wulfmeyer, O. Branch, S. Attinger, and S. Thober, 2016: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J. Geophys. Res. Atmos., 121, 10 67610 700, https://doi.org/10.1002/2016JD025097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture rainfall feedback mechanism: 1: Theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EPA, 1999: Level III ecoregions of the continental United States. U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, accessed 10 December 2019, https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states.

  • Esau, I., and S. Zilitinkevich, 2010: On the role of the planetary boundary layer depth in the climate system. Adv. Sci. Res., 4, 6369, https://doi.org/10.5194/asr-4-63-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esteve, B. J., 2016: Land use influence in WRF model. A high resolution mesoscale modeling over Oriental Pyrenees. M.S. thesis, Faculty of Physics, University of Barcelona, 25 pp., http://diposit.ub.edu/dspace/bitstream/2445/105800/1/TFM_Bernat_Jimenez.pdf.

  • Fahey, D. W., S. J. Doherty, K. A. Hibbard, A. Romanou, and P. C. Taylor, 2017: Physical drivers of climate change. Climate Science Special Report: Fourth National Climate Assessment, Vol. I, D. J. Wuebbles et al., Eds., U.S. Global Change Research Program, 73–113, https://doi.org/10.7930/J0513WCR.

    • Crossref
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 1999: Analysis of the pathways relating soil moisture and subsequent rainfall in Illinois. J. Geophys. Res., 104, 31 56531 574, https://doi.org/10.1029/1999JD900757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, https://doi.org/10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., A. Berg, P. Gentine, J. P. Krasting, B. R. Lintner, S. Malyshev, J. A. Santanello Jr., and E. Shevliakova, 2017: The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun., 8, 989, https://doi.org/10.1038/s41467-017-01038-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., and et al. , 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287302, https://doi.org/10.1016/S0034-4257(02)00078-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., D. J. Parker, C. M. Taylor, C. E. Reeves, and J. G. Murphy, 2010: Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J. Geophys. Res., 115, D03102, https://doi.org/10.1029/2009JD012811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, J. J., J. G. Qi, B. M. Lofgren, N. Moore, N. Torbick, and J. M. Olson, 2007: Impacts of land use/cover classification accuracy on regional climate simulations. J. Geophys. Res., 112, D05107, https://doi.org/10.1029/2006JD007404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. A. M. Holtslag, F. D’Andrea, and M. Ek, 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 14431462, https://doi.org/10.1175/JHM-D-12-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2012a: The atmospheric response to irrigation in the Great Plains. Part II: The precipitation of irrigated water and changes in precipitation recycling. J. Hydrometeor., 13, 16871703, https://doi.org/10.1175/JHM-D-11-099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2012b: Modeling the atmospheric response to irrigation in the Great Plains. Part I: General impacts on precipitation and the energy budget. J. Hydrometeor., 13, 16671686, https://doi.org/10.1175/JHM-D-11-098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homer, C., and et al. , 2007: Completion of the 2001 National Land Cover Database for the coterminous United States. Photogramm. Eng. Remote Sens., 73, 337341.

    • Search Google Scholar
    • Export Citation
  • Huber, D., D. Mechem, and N. Brunsell, 2014: The effects of Great Plains irrigation on the surface energy balance, regional circulation, and precipitation. Climate, 2, 103128, https://doi.org/10.3390/cli2020103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, P. A., J. V.-G. de Arellano, J. Navarro, and J. F. Gonzalez-Rouco, 2014: Understanding land–atmosphere interactions across a range of spatial and temporal scales. Bull. Amer. Meteor. Soc., 95, ES14ES17, https://doi.org/10.1175/BAMS-D-13-00029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Justice, C. O., J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette, 2002: An overview of MODIS Land data processing and product status. Remote Sens. Environ., 83, 315, https://doi.org/10.1016/S0034-4257(02)00084-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawler, J. J., and et al. , 2014: Protected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA, 111, 74927497, https://doi.org/10.1073/pnas.1405557111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., Y. Song, X. Huang, J. Li, Y. Mao, T. Zhu, X. Cai, and B. Liu, 2014: Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region, China. J. Geophys. Res. Atmos., 119, 63256346, https://doi.org/10.1002/2014JD021871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., T. L. Sohl, S. V. Stehman, A. L. Gallant, K. L. Sayler, and D. E. Napton, 2002: A strategy for estimating the rates of recent United States land-cover changes. Photogramm. Eng. Remote Sens., 68, 10911099.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., K. G. Hubbard, and C. Carlson, 2004: Modification of growing-season surface temperature records in the northern Great Plains due to land-use transformation: Verification of modelling results and implication for global climate change. Int. J. Climatol., 24, 311327, https://doi.org/10.1002/joc.992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., S. A. Foster, T. Keeling, K. G. Hubbard, C. Carlson, and R. Leeper, 2006: Impacts of irrigation on 20th century temperature in the northern Great Plains. Global Planet. Change, 54 (1–2), 118, https://doi.org/10.1016/j.gloplacha.2005.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., R. Leeper, and A. I. Quintanar, 2011: Sensitivity of planetary boundary layer atmosphere to historical and future changes of land use/land cover, vegetation fraction, and soil moisture in western Kentucky, USA. Global Planet. Change, 78, 3653, https://doi.org/10.1016/j.gloplacha.2011.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., T. Keeling, S. A. Foster, and K. G. Hubbard, 2013: Did irrigation impact 20th century air temperature in the High Plains aquifer region? Appl. Geogr., 38, 1121, https://doi.org/10.1016/j.apgeog.2012.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and et al. , 2014: Land cover changes and their biogeophysical effects on climate. Int. J. Climatol., 34, 929953, https://doi.org/10.1002/joc.3736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., R. A. Pielke Sr., and C. A. McAlpine, 2016: Climate-relevant land use and land cover change policies. Bull. Amer. Meteor. Soc., 97, 195202, https://doi.org/10.1175/BAMS-D-14-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nair, U. S., Y. Wu, J. Kala, T. J. Lyons, R. A. Pielke Sr., and J. M. Hacker, 2011: The role of land use change on the development and evolution of the west coast trough, convective clouds, and precipitation in southwest Australia. J. Geophys. Res., 116, D07103, https://doi.org/10.1029/2010JD014950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and et al. , 2000: Special Report on Emissions Scenarios. Cambridge University Press, 608 pp.

  • Nikolic, J., S. Zhong, L. Pei, X. Bian, W. E. Heilman, and J. J. Charney, 2019: Sensitivity of low-level jets to land-use and land-cover change over the continental U.S. Atmosphere, 10, 174, https://doi.org/10.3390/atmos10040174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and et al. , 2011: The community Noah land surface model with multiparameterization options (Noah–MP): 1. Model description and evaluation with local–scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pei, L., N. Moore, S. Zhong, A. D. Kendall, Z. Gao, and D. W. Hyndman, 2016: Effects of irrigation on summer precipitation over the United States. J. Climate, 29, 35413558, https://doi.org/10.1175/JCLI-D-15-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., 2005: Land use and climate change. Science, 310, 16251626, https://doi.org/10.1126/science.1120529.

  • Pielke, R. A., Sr., and et al. , 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, https://doi.org/10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., R. Mahmood, and C. McAlpine, 2016: Land’s complex role in climate change. Phys. Today, 69, 4046, https://doi.org/10.1063/PT.3.3364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., F. B. Avila, G. Abramowitz, Y. P. Wang, S. J. Phipps, and N. de Noblet-Ducoudré, 2011: Importance of background climate in determining impact of land-cover change on regional climate. Nat. Climate Change, 1, 472475, https://doi.org/10.1038/nclimate1294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pyke, C. R., and S. J. Andelman, 2007: Land use and land cover tools for climate adaptation. Climatic Change, 80, 239251, https://doi.org/10.1007/s10584-006-9110-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., and R. W. Arritt, 1992: Non-classical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc., 73, 15931604, https://doi.org/10.1175/1520-0477(1992)073<1593:NMCCBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

    • Crossref
    • Export Citation
  • Sleeter, B. M., T. Loveland, G. Domke, N. Herold, J. Wickham, and N. Wood, 2018: Land cover and land-use change. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Vol. II, D. R. Reidmiller et al., Eds., U.S. Global Change Research Program, 202–231, https://doi.org/10.7930/NCA4.2018.CH5.

    • Crossref
    • Export Citation
  • Sohl, T. L., K. L. Sayler, M. A. Drummond, and T. R. Loveland, 2007: The FORE-SCE model: A practical approach for projecting land cover change using scenario-based modeling. J. Land Use Sci., 2, 103126, https://doi.org/10.1080/17474230701218202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohl, T. L., and et al. , 2012: Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States. Agric. Ecosyst. Environ., 153, 115, https://doi.org/10.1016/j.agee.2012.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohl, T. L., and et al. , 2014: Spatially explicit modeling of 1992–2100 land cover and forest stand age for the conterminous United States. Ecol. Appl., 24, 10151036, https://doi.org/10.1890/13-1245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohl, T. L., M. C. Wimberely, V. C. Radeloff, D. M. Theobald, and B. M. Sleeter, 2016: Divergent projections of future land use in the United States arising from different models and scenarios. Ecol. Modell., 337, 281297, https://doi.org/10.1016/j.ecolmodel.2016.07.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohl, T. L., and et al. , 2018: Conterminous United States Land Cover Projections—1992 to 2100. U.S. Geological Survey, accessed 13 March 2019, https://doi.org/10.5066/P95AK9HP.

    • Crossref
    • Export Citation
  • Spera, S. A., J. M. Winter, and J. W. Chipman, 2018: Evaluation of agricultural land cover representations on regional climate model simulations in the Brazilian Cerrado. J. Geophys. Res. Atmos., 123, 51635176, https://doi.org/10.1029/2017JD027989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torbick, N., D. Lusch, J. Qi, N. Moore, J. Olson, and J. Ge, 2006: Developing land use/land cover parameterization for climate–land modeling in East Africa. Int. J. Remote Sens., 27, 42274244, https://doi.org/10.1080/01431160600702426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veldkamp, A., and E. F. Lambin, 2001: Predicting land use change. Agric. Ecosyst. Environ., 85 (1–3), 16, https://doi.org/10.1016/S0167-8809(01)00199-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelmann, J. E., S. M. Howard, L. Yang, C. R. Larson, B. K. Wylie, and N. Van Driel, 2001: Completion of the 1990s National Land Cover Data Set for the conterminous United States from LandSat thematic mapper data and ancillary data sources. Photogramm. Eng. Remote Sens., 67, 650662.

    • Search Google Scholar
    • Export Citation
  • Wang, H. J., W. L. Shi, and X. H. Chen, 2006: The statistical significance test of regional climate change caused by land use and land cover variation in West China. Adv. Atmos. Sci., 23, 355364, https://doi.org/10.1007/s00376-006-0355-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wear, D. N., 2011: Forecasts of county-level land uses under three future scenarios: A technical document supporting the forest service 2010 RPA Assessment. USDA Forest Service Southern Research Station General Tech. Rep. SRS-141, 41 pp.

    • Crossref
    • Export Citation
  • Wisse, J. S. P., and J. Vilà-Guerau de Arellano, 2004: Analysis of the role of the planetary boundary layer schemes during a severe convective storm. Ann. Geophys., 22, 18611874, https://doi.org/10.5194/angeo-22-1861-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., J. A. Santanello, S. V. Kumar, and C. D. Peters-Lidard, 2013: Representation of soil moisture feedbacks during drought in NASA Unified WRF (NU-WRF). J. Hydrometeor., 14, 360367, https://doi.org/10.1175/JHM-D-12-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and A. J. Pitman, 2002: The regional scale impact of land cover change simulated with a climate model. Int. J. Climatol., 22, 271290, https://doi.org/10.1002/joc.727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., A. J. Pitman, and T. Chase, 2001: The impact of land cover change on the atmospheric circulation. Climate Dyn., 17, 467477, https://doi.org/10.1007/PL00013740.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 1 1
Full Text Views 118 118 118
PDF Downloads 82 82 82

Simulated Atmospheric Response to Four Projected Land-Use Land-Cover Change Scenarios for 2050 in the North-Central United States

View More View Less
  • 1 a U.S. Department of Agriculture Agricultural Research Service, El Reno, Oklahoma
  • | 2 b High Plains Regional Climate Center, University of Nebraska–Lincoln, Lincoln, Nebraska
  • | 3 c School of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska
  • | 4 d U.S. Geological Survey Earth Resources Observation and Science Center, Sioux Falls, South Dakota
  • | 5 e National Drought Mitigation Center, University of Nebraska–Lincoln, Lincoln, Nebraska
  • | 6 f Center for Advanced Land Management Information Technologies, University of Nebraska–Lincoln, Lincoln, Nebraska
  • | 7 g Kentucky Climate Center, Western Kentucky University, Bowling Green, Kentucky
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Land-use land-cover change (LULCC) has become an important topic of research for the central United States because of the extensive conversion of the natural prairie into agricultural land, especially in the northern Great Plains. As a result, shifts in the natural climate (minimum/maximum temperature, precipitation, etc.) across the north-central United States have been observed, as noted within the Fourth National Climate Assessment (NCA4) report. Thus, it is necessary to understand how further LULCC will affect the near-surface atmosphere, the lower troposphere, and the planetary boundary layer (PBL) atmosphere over this region. The goal of this work was to investigate the utility of a new future land-use land-cover (LULC) dataset within the Weather Research and Forecasting (WRF) modeling system. The present study utilizes a modeled future land-use dataset developed by the Forecasting Scenarios of Land-Use Change (FORE-SCE) model to investigate the influence of future (2050) land use on a simulated PBL development within the WRF Model. Three primary areas of LULCC were identified within the FORE-SCE future LULC dataset across Nebraska and South Dakota. Variations in LULC between the 2005 LULC control simulation and four FORE-SCE simulations affected near-surface temperature (0.5°–1°C) and specific humidity (0.3–0.5 g kg−1). The differences noted in the temperature and moisture fields affected the development of the simulated PBL, leading to variations in PBL height and convective available potential energy. Overall, utilizing the FORE-SCE dataset within WRF produced notable differences relative to the control simulation over areas of LULCC represented in the FORE-SCE dataset.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul Flanagan, paul.flanagan2@usda.gov

Abstract

Land-use land-cover change (LULCC) has become an important topic of research for the central United States because of the extensive conversion of the natural prairie into agricultural land, especially in the northern Great Plains. As a result, shifts in the natural climate (minimum/maximum temperature, precipitation, etc.) across the north-central United States have been observed, as noted within the Fourth National Climate Assessment (NCA4) report. Thus, it is necessary to understand how further LULCC will affect the near-surface atmosphere, the lower troposphere, and the planetary boundary layer (PBL) atmosphere over this region. The goal of this work was to investigate the utility of a new future land-use land-cover (LULC) dataset within the Weather Research and Forecasting (WRF) modeling system. The present study utilizes a modeled future land-use dataset developed by the Forecasting Scenarios of Land-Use Change (FORE-SCE) model to investigate the influence of future (2050) land use on a simulated PBL development within the WRF Model. Three primary areas of LULCC were identified within the FORE-SCE future LULC dataset across Nebraska and South Dakota. Variations in LULC between the 2005 LULC control simulation and four FORE-SCE simulations affected near-surface temperature (0.5°–1°C) and specific humidity (0.3–0.5 g kg−1). The differences noted in the temperature and moisture fields affected the development of the simulated PBL, leading to variations in PBL height and convective available potential energy. Overall, utilizing the FORE-SCE dataset within WRF produced notable differences relative to the control simulation over areas of LULCC represented in the FORE-SCE dataset.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Paul Flanagan, paul.flanagan2@usda.gov
Save