• AICC, 2020: Alaska wildland fire information map series: Fuels and fire history. https://fire.ak.blm.gov/.

  • Arndt, K. A., and et al. , 2019: Arctic greening associated with lengthening growing seasons in northern Alaska. Environ. Res. Lett., 14, 125018, https://doi.org/10.1088/1748-9326/ab5e26.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, D. E., 2005: Observed storminess patterns and trends in the circum-Arctic coastal regime. Geo-Mar. Lett., 25, 98109, https://doi.org/10.1007/s00367-004-0191-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., T. R. McVicar, A. I. J. M. van Dijk, J. Schellekens, R. A. M. de Jeu, and L. A. Bruijnzeel, 2011: Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ., 115, 25472563, https://doi.org/10.1016/j.rse.2011.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, L. T., and et al. , 2020: Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun., 11, 4621, https://doi.org/10.1038/s41467-020-18479-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., and et al. , 2010: Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interact., 14, https://doi.org/10.1175/2010EI315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., and et al. , 2013: Recent declines in warming and vegetation greening trends over Pan-Arctic tundra. Remote Sens., 5, 42294254, https://doi.org/10.3390/rs5094229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., and et al. , 2017: Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environ. Res. Lett., 12, 055003, https://doi.org/10.1088/1748-9326/aa6b0b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., and et al. , 2015: Climate drivers linked to changing seasonality of Alaska coastal tundra vegetation productivity. Earth Interact., 19, https://doi.org/10.1175/EI-D-15-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieniek, P. A., U. S. Bhatt, J. E. Walsh, R. Lader, B. Griffith, J. K. Roach, and R. L. Thoman, 2018: Assessment of Alaska rain-on-snow events using dynamical downscaling. J. Appl. Meteor. Climatol., 57, 18471863, https://doi.org/10.1175/JAMC-D-17-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerke, J. W., S. Rune Karlsen, K. Arild Høgda, E. Malnes, J. U. Jepsen, S. Lovibond, D. Vikhamar-Schuler, and H. Tømmervik, 2014: Record-low primary productivity and high plant damage in the Nordic Arctic region in 2012 caused by multiple weather events and pest outbreaks. Environ. Res. Lett., 9, 084006, https://doi.org/10.1088/1748-9326/9/8/084006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bokhorst, S. F., J. W. Bjerke, H. Tømmervik, T. V. Callaghan, and G. K. Phoenix, 2009: Winter warming events damage sub-Arctic vegetation: Consistent evidence from an experimental manipulation and a natural event. J. Ecol., 97, 14081415, https://doi.org/10.1111/j.1365-2745.2009.01554.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bokhorst, S. F., J. W. Bjerke, L. E. Steet, T. V. Callaghan, and G. K. Phoenix, 2011: Impacts of multiple extreme winter warming events on sub-Arctic heathland: Phenology, reproduction, growth, and CO2 flux responses. Global Change Biol., 17, 28172830, https://doi.org/10.1111/j.1365-2486.2011.02424.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bronen, R., D. Pollock, J. Overbeck, D. Stevens, S. Natali, and C. Maio, 2019: Usteq: Integrating indigenous knowledge and social and physical sciences to coproduce knowledge and support community-based adaptation. Polar Geogr., 43 (2–3), 118, https://doi.org/10.1080/1088937X.2019.1679271.

    • Search Google Scholar
    • Export Citation
  • CAVM Team, 2003: Circumpolar Arctic vegetation map (1:7,500,000 scale). Conservation of Arctic Flora and Fauna (CAFF) Map No. 1, U.S. Fish and Wildlife Service, https://www.geobotany.uaf.edu/cavm/.

  • Clinton, N., 2020: Non-parametric trend analysis. Google Earth Engine, accessed 22 April 2021, https://developers.google.com/earth-engine/tutorials/community/nonparametric-trends.

  • Comiso, J. C., 2003: Warming trends in the Arctic from clear sky satellite observations. J. Climate, 16, 34983510, https://doi.org/10.1175/1520-0442(2003)016<3498:WTITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and F. Nishio, 2008: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res., 113, C02S07, https://doi.org/10.1029/2007JC004257.

    • Search Google Scholar
    • Export Citation
  • Dobricic, S., S. Russo, L. Pozzoli, J. Wilson, and E. Vignati, 2020: Increasing occurrence of heat waves in the terrestrial Arctic. Environ. Res. Lett., 15, 024022, https://doi.org/10.1088/1748-9326/ab6398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutrieux, L. P., H. Bartholomeus, M. Herold, and J. Verbesselt, 2012: Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11). Environ. Res. Lett., 7, 044028, https://doi.org/10.1088/1748-9326/7/4/044028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fienup-Riordan, A., 1999: Yaqulget qaillun pilartat (what the birds do): Yup’ik Eskimo understanding of geese and those who study them. Arctic, 52 (1), 122, https://doi.org/10.14430/arctic905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fienup-Riordan, A., G. V. Frost, R. Nayamin-Kelly, U. S. Bhatt, A. S. Hendricks, M. John, and P. Odom, 2021: Yup’ik and Cup’ik observations of Alaska’s changing Yukon-Kuskokwim Delta: Results of a knowledge exchange meeting with natural scientists. ABR, Inc.—Environmental Research & Services Rep., 40 pp., https://doi.org/10.3334/ORNLDAAC/1894.

    • Crossref
    • Export Citation
  • Gamon, J. A., K. F. Huemmrich, R. S. Stone, and C. E. Tweedie, 2013: Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: Decreased vegetation growth following earlier snowmelt. Remote Sens. Environ., 129, 144153, https://doi.org/10.1016/j.rse.2012.10.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, R. E., Jr., and C. M. Handel, 1990: The importance of subarctic intertidal habitats to shorebirds: A study of the central Yukon-Kuskokwim Delta, Alaska. Condor, 92, 709725, https://doi.org/10.2307/1368690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, 2017: Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ., 202, 1827, https://doi.org/10.1016/j.rse.2017.06.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, R. M., L. Cohen, A. A. Petty, L. N. Boisvert, A. Rinke, S. R. Hudson, M. Nicolaus, and M. A. Granskog, 2017: Increasing frequency and duration of Arctic winter warming events. Geophys. Res. Lett., 44, 69746983, https://doi.org/10.1002/2017GL073395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grebmeier, J. M., and et al. , 2006: A major ecosystem shift in the northern Bering Sea. Science, 311, 14611464, https://doi.org/10.1126/science.1121365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guay, K. C., P. S. A. Beck, L. T. Berner, S. J. Goetz, A. Baccini, and W. Buermann, 2014: Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment. Global Change Biol., 20, 31473158, https://doi.org/10.1111/gcb.12647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman-Mercer, N. M., M. Laituri, M. Massey, E. Matkin, R. Toohey, K. Elder, P. F. Schuster, and E. Mutter, 2019: Vulnerability of subsistence systems due to social and environmental change: A case study in the Yukon-Kuskokwim Delta, Alaska. Arctic, 72, 258272, https://doi.org/10.14430/arctic68867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman-Mercer, N. M., R. A. Loehman, R. C. Toohey, and C. Paniyak, 2020: Climate- and disturbance-driven changes in subsistence berries in coastal Alaska: Indigenous knowledge to inform ecological inference. Hum. Ecol., 48, 8599, https://doi.org/10.1007/s10745-020-00138-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Jia, G. J., H. E. Epstein, and D. A. Walker, 2003: Greening of Arctic Alaska, 1981–2001. Geophys. Res. Lett., 30, 2067, https://doi.org/10.1029/2003GL018268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonasson, S., 1988: Evaluation of the point intercept method for the estimation of plant biomass. Oikos, 52, 101106, https://doi.org/10.2307/3565988.

  • Jorgenson, M. T., 2000: Hierarchical organization of ecosystems at multiple spatial scales on the Yukon-Kuskokwim Delta, Alaska, U.S.A. Arct. Antarct. Alp. Res., 32, 221239, https://doi.org/10.1080/15230430.2000.12003360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgenson, M. T., and J. E. Roth, 2010: Landscape classification and mapping for the Yukon-Kuskokwim Delta, Alaska. ABR, Inc.—Environmental Research & Services Doc., 24 pp.

  • Jorgenson, M. T., G. V. Frost, and D. Dissing, 2018: Drivers of landscape changes in coastal ecosystems on the Yukon-Kuskokwim Delta, Alaska. Remote Sens., 10, 1280, https://doi.org/10.3390/rs10081280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgenson, T., and C. Ely, 2001: Topography and flooding of coastal ecosystems on the Yukon-Kuskokwim Delta, Alaska: implications for sea-level rise. J. Coastal Res., 17, 124136.

    • Search Google Scholar
    • Export Citation
  • Ju, J., and J. G. Masek, 2016: The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ., 176, 116, https://doi.org/10.1016/j.rse.2016.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, J. W., S. E. McCord, and B. C. Hadley, 2017: A comparison of cover calculation techniques for relating point-intercept vegetation sampling to remote sensing imagery. Ecol. Indic., 73, 156165, https://doi.org/10.1016/j.ecolind.2016.09.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemppinen, J., P. Niittynen, J. Aalto, P. C. le Roux, and M. Luoto, 2019: Water as a resource, stress and disturbance shaping tundra vegetation. Oikos, 128, 811822, https://doi.org/10.1111/oik.05764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirwan, M. L., G. R. Guntenspergen, A. D’Alpaos, J. T. Morris, S. M. Mudd, and S. Temmerman, 2010: Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett., 37, L23401 https://doi.org/10.1029/2010GL045489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, D. R., 1966: Waterfowl in the economy of the Eskimos on the Yukon-Kuskokwim Delta, Alaska. Arctic, 19, 319336, https://doi.org/10.14430/arctic3438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kokelj, S. V., and et al. , 2012: Using multiple sources of knowledge to investigate northern environmental change: Regional ecological impacts of a storm surge in the outer Mackenzie Delta, N.W.T. Arctic, 65, 257272, https://doi.org/10.14430/arctic4214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landrum, L., and M. M. Holland, 2020: Extremes become routine in an emerging new Arctic. Nat. Climate Change, 10, 11081115, https://doi.org/10.1038/s41558-020-0892-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lantz, T. C., S. V. Kokelj, and R. H. Fraser, 2015: Ecological recovery in an Arctic delta following widespread saline incursion. Ecol. Appl., 25, 172185, https://doi.org/10.1890/14-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latifovic, R., D. Pouliot, and C. Dillabaugh, 2012: Identification and correction of systematic error in NOAA AVHRR long-term satellite data record. Remote Sens. Environ., 127, 8497, https://doi.org/10.1016/j.rse.2012.08.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauzon, R., A. Piliouras, and J. C. Rowland, 2019: Ice and permafrost effects on delta morphology and channel dynamics. Geophys. Res. Lett., 46, 65746582, https://doi.org/10.1029/2019GL082792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., A. G. Slater, R. A. Tomas, M. M. Holland, and C. Deser, 2008: Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett., 35, L11506, https://doi.org/10.1029/2008GL033985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macander, M. J., 2005: MODIS satellite vegetation indices over partially vegetated pixels on the Arctic coastal plain of Alaska. M.S. thesis, Dept. of Forest Sciences, University of Alaska Fairbanks, 113 pp.

  • Macias-Fauria, M., B. C. Forbes, P. Zetterberg, and T. Kumpula, 2012: Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat. Climate Change, 2, 613618, https://doi.org/10.1038/nclimate1558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macias-Fauria, M., S. R. Karlsen, and B. C. Forbes, 2017: Disentangling the coupling between sea ice and tundra productivity in Svalbard. Sci. Rep., 7, 8586, https://doi.org/10.1038/s41598-017-06218-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and et al. , 2012: Global Historical Climatology Network–Daily (GHCN–Daily), version 3.26. NOAA/National Climatic Data Center, https://doi.org/10.7289/V5D21VHZ.

    • Crossref
    • Export Citation
  • Michaelides, R. J., and et al. , 2019: Inference of the impact of wildfire on permafrost and active layer thickness in a discontinuous permafrost region using the Remotely Sensed Active Layer Thickness (ReSALT) algorithm. Environ. Res. Lett., 14, 035007, https://doi.org/10.1088/1748-9326/aaf932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, V. V., and I. Esau, 2016: Spatial heterogeneity of greening and browning between and within bioclimatic zones in northern west Siberia. Environ. Res. Lett., 11, 115002, https://doi.org/10.1088/1748-9326/11/11/115002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueter, F. J., and M. A. Litzow, 2008: Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol. Appl., 18, 309320, https://doi.org/10.1890/07-0564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers-Smith, I. H., and et al. , 2011: Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett., 6, 045509, https://doi.org/10.1088/1748-9326/6/4/045509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers-Smith, I. H., and et al. , 2020: Complexity revealed in the greening of the Arctic. Nat. Climate Change, 10, 106117, https://doi.org/10.1038/s41558-019-0688-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani, 1997: Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698702, https://doi.org/10.1038/386698a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitze, I., and G. Grosse, 2016: Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks. Remote Sens. Environ., 181, 2741, https://doi.org/10.1016/j.rse.2016.03.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowacki, G., P. Spencer, M. Fleming, T. Brock, and M. T. Jorgenson, 2003: Ecoregions of Alaska: 2001. USGS Open-File Rep. 200229, https://doi.org/10.3133/ofr2002297.

    • Crossref
    • Export Citation
  • Pachauri, R. K., and et al. , 2014: Climate Change 2014: Synthesis Report. Cambridge University Press, 151 pp., https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf.

  • Palm, S. P., S. T. Strey, J. Spinhirne, and T. Markus, 2010: Influence of Arctic sea ice extent on polar cloud fraction and vertical structure and implications for regional climate. J. Geophys. Res., 115, D21209, https://doi.org/10.1029/2010JD013900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T., and et al. , 2016: Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett., 11, 084001, https://doi.org/10.1088/1748-9326/11/8/084001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pastick, N. J., M. T. Jorgenson, B. K. Wylie, S. J. Nield, K. D. Johnson, and A. O. Finley, 2015: Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions. Remote Sens. Environ., 168, 301315, https://doi.org/10.1016/j.rse.2015.07.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pastick, N. J., and et al. , 2019: Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Global Change Biol., 25, 11711189, https://doi.org/10.1111/gcb.14279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pekel, J. F., A. Cottam, N. Gorelick, and A. S. Belward, 2016: High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418422, https://doi.org/10.1038/nature20584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, P., 2010: Unit 18 moose management report. Moose management report of survey and inventory activities 1 July 2007–30 June 2009, P. Harper, Ed., Alaska Department of Fish and Game Management Rep., 271–285, https://www.adfg.alaska.gov/static/home/library/pdfs/wildlife/mgt_rpts/10_moose.pdf.

  • Piao, S., and et al. , 2019: Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ., 1, 1427, https://doi.org/10.1038/s43017-019-0001-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinzon, J., and C. Tucker, 2014: A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens., 6, 69296960, https://doi.org/10.3390/rs6086929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, C., and O. Alexander, 2020: Changes in vegetation phenology and productivity in Alaska over the past two decades. Remote Sens., 12, 1546, https://doi.org/10.3390/rs12101546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynolds, M. K., and D. A. Walker, 2016: Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett., 11, 085004, https://doi.org/10.1088/1748-9326/11/8/085004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynolds, M. K., J. Comiso, D. Walker, and D. Verbyla, 2008: Relationship between satellite-derived land surface temperatures, Arctic vegetation types, and NDVI. Remote Sens. Environ., 112, 18841894, https://doi.org/10.1016/j.rse.2007.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynolds, M. K., D. A. Walker, H. E. Epstein, J. E. Pinzon, and C. J. Tucker, 2012: A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sens. Lett., 3, 403411, https://doi.org/10.1080/01431161.2011.609188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynolds, M. K., and et al. , 2019: A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ., 232, 111297, https://doi.org/10.1016/j.rse.2019.111297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rearden, A., and A. Fienup-Riordan, 2014: Nunamta Ellamta-llu Ayuqucia: What Our Land and World Are Like. Calista Elders Council and Alaska Native Language Center, 656 pp.

  • Reichle, L. M., H. E. Epstein, U. S. Bhatt, M. K. Raynolds, and D. A. Walker, 2018: Spatial heterogeneity of the temporal dynamics of Arctic tundra vegetation. Geophys. Res. Lett., 45, 92069215, https://doi.org/10.1029/2018GL078820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roy, D. P., V. Kovalskyy, H. K. Zhang, E. F. Vermote, L. Yan, S. S. Kumar, and A. Egorov, 2016: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ., 185, 5770, https://doi.org/10.1016/j.rse.2015.12.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356, https://doi.org/10.1029/1999JD901105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., and Z. Wang, 2020: MCD43A4 v006 MODIS/Terra+Aqua Nadir BRDF-Adjusted Reflectance (NBAR) Daily L3 Global 500 m SIN Grid. NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD43A4.006.

    • Crossref
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shippert, M. M., D. A. Walker, N. A. Auerbach, and B. E. Lewis, 1995: Biomass and leaf-area index maps derived from SPOT images for Toolik Lake and Imnavait Creek areas, Alaska. Polar Rec., 31, 147154, https://doi.org/10.1017/S0032247400013644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, D. L., U. C. Nelson, and W. A. Elkins, 1951: America’s greatest goose-brant nesting area. Transactions of the North American Wildlife Conference, American Wildlife Institute, 290–295.

  • Taylor, P. C., R. C. Boeke, Y. Li, and D. W. J. Thompson, 2019: Arctic cloud annual cycle biases in climate models. Atmos. Chem. Phys., 19, 87598782, https://doi.org/10.5194/acp-19-8759-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terenzi, J., M. T. Jorgenson, and C. R. Ely, 2014: Storm-surge flooding on the Yukon-Kuskokwim Delta, Alaska. Arctic, 67, 360374, https://doi.org/10.14430/arctic4403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theil, H., 1992: A rank-invariant method of linear and polynomial regression analysis. Contributions to Economics and Econometrics, Springer, 345–381.

    • Crossref
    • Export Citation
  • Tucker, C. J., and P. J. Sellers, 1986: Satellite remote sensing of primary production. Int. J. Remote Sens., 7, 13951416, https://doi.org/10.1080/01431168608948944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., J. H. Elgin, J. E. McMurtrey, and C. J. Fan, 1979: Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sens. Environ., 8, 237248, https://doi.org/10.1016/0034-4257(79)90004-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., J. E. Pinzon, M. E. Brown, D. A. Slayback, E. W. Pak, R. Mahoney, E. F. Vermote, and N. E. Saleous, 2005: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 44854498, https://doi.org/10.1080/01431160500168686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdonen, M., L. T. Berner, B. C. Forbes, and T. Kumpula, 2020: Periglacial vegetation dynamics in Arctic Russia: Decadal analysis of tundra regeneration on landslides with time series satellite imagery. Environ. Res. Lett., 15, 105020, https://doi.org/10.1088/1748-9326/abb500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vermaire, J. C., M. F. J. Pisaric, J. R. Thienpont, C. J. Courtney Mustaphi, S. V. Kokelj, and J. P. Smol, 2013: Arctic climate warming and sea ice declines lead to increased storm surge activity. Geophys. Res. Lett., 40, 13861390, https://doi.org/10.1002/grl.50191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, D. A., and et al. , 2003: Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. J. Geophys. Res., 108, 8169, https://doi.org/10.1029/2001JD000986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, J. H. R., J. E. Walsh, and R. L. Thoman Jr., 2021: Using Bayesian statistics to detect trends in Alaskan precipitation. Int. J. Climatol., 41, 20452059, https://doi.org/10.1002/joc.6946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitley, M. A., G. V. Frost, M. T. Jorgenson, M. J. Macander, C. V. Maio, and S. G. Winder, 2018: Assessment of LiDAR and spectral techniques for high-resolution mapping of sporadic permafrost on the Yukon-Kuskokwim Delta, Alaska. Remote Sens., 10, 258, https://doi.org/10.3390/rs10020258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., and et al. , 2013: Temperature and vegetation seasonality diminishment over northern lands. Nat. Climate Change, 3, 581586, https://doi.org/10.1038/nclimate1836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, W., A. I. J. M. van Dijk, A. Huete, and M. Yebra, 2021: Global trends in vegetation seasonality in the GIMMS NDVI3g and their robustness. Int. J. Appl. Earth Obs. Geoinf., 94, 102238, https://doi.org/10.1016/j.jag.2020.102238.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 45
PDF Downloads 43 43 43

Is Alaska’s Yukon–Kuskokwim Delta Greening or Browning? Resolving Mixed Signals of Tundra Vegetation Dynamics and Drivers in the Maritime Arctic

View More View Less
  • 1 a ABR, Inc.—Environmental Research and Services, Fairbanks, Alaska
  • | 2 b Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 3 c Alaska Ecoscience, Fairbanks, Alaska
© Get Permissions
Restricted access

Abstract

Alaska’s Yukon–Kuskokwim Delta (YKD) is among the Arctic’s warmest, most biologically productive regions, but regional decline of the normalized difference vegetation index (NDVI) has been a striking feature of spaceborne Advanced High Resolution Radiometer (AVHRR) observations since 1982. This contrast with “greening” prevalent elsewhere in the low Arctic raises questions concerning climatic and biophysical drivers of tundra productivity along maritime–continental gradients. We compared NDVI time series from AVHRR, the Moderate Resolution Imaging Spectroradiometer (MODIS), and Landsat for 2000–19 and identified trend drivers with reference to sea ice and climate datasets, ecosystem and disturbance mapping, field measurements of vegetation, and knowledge exchange with YKD elders. All time series showed increasing maximum NDVI; however, whereas MODIS and Landsat trends were very similar, AVHRR-observed trends were weaker and had dissimilar spatial patterns. The AVHRR and MODIS records for time-integrated NDVI were dramatically different; AVHRR indicated weak declines, whereas MODIS indicated strong increases throughout the YKD. Disagreement largely arose from observations during shoulder seasons, when there is partial snow cover and very high cloud frequency. Nonetheless, both records shared strong correlations with spring sea ice extent and summer warmth. Multiple lines of evidence indicate that, despite frequent disturbances and high interannual variability in spring sea ice and summer warmth, tundra productivity is increasing on the YKD. Although climatic drivers of tundra productivity were similar to more continental parts of the Arctic, our intercomparison highlights sources of uncertainty in maritime areas like the YKD that currently, or soon will, challenge historical concepts of “what is Arctic.”

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/EI-D-20-0025.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gerald V. Frost, jfrost@abrinc.com

Abstract

Alaska’s Yukon–Kuskokwim Delta (YKD) is among the Arctic’s warmest, most biologically productive regions, but regional decline of the normalized difference vegetation index (NDVI) has been a striking feature of spaceborne Advanced High Resolution Radiometer (AVHRR) observations since 1982. This contrast with “greening” prevalent elsewhere in the low Arctic raises questions concerning climatic and biophysical drivers of tundra productivity along maritime–continental gradients. We compared NDVI time series from AVHRR, the Moderate Resolution Imaging Spectroradiometer (MODIS), and Landsat for 2000–19 and identified trend drivers with reference to sea ice and climate datasets, ecosystem and disturbance mapping, field measurements of vegetation, and knowledge exchange with YKD elders. All time series showed increasing maximum NDVI; however, whereas MODIS and Landsat trends were very similar, AVHRR-observed trends were weaker and had dissimilar spatial patterns. The AVHRR and MODIS records for time-integrated NDVI were dramatically different; AVHRR indicated weak declines, whereas MODIS indicated strong increases throughout the YKD. Disagreement largely arose from observations during shoulder seasons, when there is partial snow cover and very high cloud frequency. Nonetheless, both records shared strong correlations with spring sea ice extent and summer warmth. Multiple lines of evidence indicate that, despite frequent disturbances and high interannual variability in spring sea ice and summer warmth, tundra productivity is increasing on the YKD. Although climatic drivers of tundra productivity were similar to more continental parts of the Arctic, our intercomparison highlights sources of uncertainty in maritime areas like the YKD that currently, or soon will, challenge historical concepts of “what is Arctic.”

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/EI-D-20-0025.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gerald V. Frost, jfrost@abrinc.com

Supplementary Materials

    • Supplemental Materials (PDF 240.96 KB)
Save