Interannual Variability in the Meridional Transport of Water Vapor

Judah L. Cohen Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Judah L. Cohen in
Current site
Google Scholar
PubMed
Close
,
David A. Salstein Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by David A. Salstein in
Current site
Google Scholar
PubMed
Close
, and
Richard D. Rosen Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Richard D. Rosen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The zonal-mean meridional transport of water vapor across the globe is evaluated using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis for 1948–97. The shape of the meridional profile of the climatological mean transport closely resembles that of previous mean climate descriptions, but values tend to be notably larger than in climatologies derived from radiosonde-only-based analyses. The unprecedented length of the NCEP–NCAR dataset invites a focus on interannual variations in the zonal-mean moisture transport, and these results for northern winter are highlighted here. Although interannual variability in the transport is typically small at most latitudes, a significant ENSO signal is present, marked by a strengthening of water vapor transports over much of the winter hemisphere during warm events. Because of an increase in tropical sea surface temperatures and in the frequency of warm events relative to cold events in the latter half of the 50-yr record, this interannual signal projects onto an overall trend toward enhanced meridional moisture transports in the global hydrological cycle.

Corresponding author address: Dr. Richard D. Rosen, Atmospheric and Environmental Research, Inc., 131 Hartwell Ave., Lexington, MA 02421.

Email: rdrosen@aer.com

Abstract

The zonal-mean meridional transport of water vapor across the globe is evaluated using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis for 1948–97. The shape of the meridional profile of the climatological mean transport closely resembles that of previous mean climate descriptions, but values tend to be notably larger than in climatologies derived from radiosonde-only-based analyses. The unprecedented length of the NCEP–NCAR dataset invites a focus on interannual variations in the zonal-mean moisture transport, and these results for northern winter are highlighted here. Although interannual variability in the transport is typically small at most latitudes, a significant ENSO signal is present, marked by a strengthening of water vapor transports over much of the winter hemisphere during warm events. Because of an increase in tropical sea surface temperatures and in the frequency of warm events relative to cold events in the latter half of the 50-yr record, this interannual signal projects onto an overall trend toward enhanced meridional moisture transports in the global hydrological cycle.

Corresponding author address: Dr. Richard D. Rosen, Atmospheric and Environmental Research, Inc., 131 Hartwell Ave., Lexington, MA 02421.

Email: rdrosen@aer.com

Save
  • Basist, A. N., and M. Chelliah, 1997: Comparison of tropospheric temperatures derived from the NCEP/NCAR reanalysis, NCEP operational analysis, and the Microwave Sounding Unit. Bull. Amer. Meteor. Soc.,78, 1431–1447.

    • Crossref
    • Export Citation
  • Bromwich, D. H., F. M. Robasky, R. L. Cullather, and M. L. Van Woert, 1995: The atmospheric hydrologic cycle over the Southern Ocean and Antarctica from operational numerical analyses. Mon. Wea. Rev.,123, 3518–3538.

    • Crossref
    • Export Citation
  • Chahine, M. T., R. Haskins, and E. Fetzer, 1997: Observation of the recycling rate of moisture in the atmosphere: 1988–1994. GEWEX News,7, 1–4.

  • Chen, T.-C., 1985: Global water vapor flux and maintenance during FGGE. Mon. Wea. Rev.,113, 1801–1819.

    • Crossref
    • Export Citation
  • Cullather, R. I., D. H. Bromwich, and M. C. Serreze, 2000: The atmospheric hydrologic cycle over the Arctic basin from reanalyses. Part I. Comparison with observations and previous studies. J. Climate,13, 923–937.

    • Crossref
    • Export Citation
  • Elliott, W. P., 1995: On detecting long-term changes in atmospheric moisture. Climatic Change,31, 349–367.

    • Crossref
    • Export Citation
  • Gaffen, D. J., and R. J. Ross, 1999: Climatology and trends of U.S. surface humidity and temperature. J. Climate,12, 811–828.

    • Crossref
    • Export Citation
  • ——, R. D. Rosen, D. A. Salstein, and J. S. Boyle, 1997: Evaluation of tropospheric water vapor simulations from the Atmospheric Model Intercomparison Project. J. Climate,10, 1648–1661.

  • Gleckler, P. J., and Coauthors, 1995: Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models. Geophys. Res. Lett.,22, 791–794.

    • Crossref
    • Export Citation
  • Gutowski, W. J., Y. Chen, and Z. Otles, 1997: Atmospheric water vapor transport in NCEP–NCAR reanalyses: Comparison with river discharge in the central United States. Bull. Amer. Meteor. Soc.,78, 1957–1969.

    • Crossref
    • Export Citation
  • Held, I. M., 1993: Large-scale dynamics and global warming. Bull. Amer. Meteor. Soc.,74, 228–241.

    • Crossref
    • Export Citation
  • Hurrell, J. W., and K. E. Trenberth, 1999: Global sea surface temperature analyses: Multiple problems and their implications for climate analysis, modeling, and reanalysis. Bull. Amer. Meteor. Soc.,80, 2661–2678.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc.,77, 437–471.

    • Crossref
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1996: Large-scale atmospheric moisture transport as evaluated in the NCEP/NCAR and the NASA/DAO reanalyses. J. Climate,9, 1531–1545.

    • Crossref
    • Export Citation
  • National Research Council, 1999: The GEWEX Global Water Vapor Project (GVaP)—U.S. Opportunities. National Academy Press, 17 pp.

  • Noel, J., and D. Changnon, 1998: A pilot study examining U.S. winter cyclone frequency patterns associated with three ENSO parameters. J. Climate,11, 2152–2159.

    • Crossref
    • Export Citation
  • Oort, A. H., and H. Liu, 1993: Upper-air temperature trends over the globe, 1958–1989. J. Climate,6, 292–307.

    • Crossref
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • ——, R. D. Rosen, and D. A. Salstein, 1978: Seasonal variability in the pole-to-pole modes of water vapor transport during the IGY. Arch. Meteor. Geophys. Bioklimatol.,A27, 233–255.

    • Crossref
    • Export Citation
  • Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N.-C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate,9, 2958–2972.

    • Crossref
    • Export Citation
  • Randel, D. L., T. H. Vonder Haar, M. A. Ringerud, G. L. Stephens, T. J. Greenwald, and C. L. Combs, 1996: A new global water vapor dataset. Bull. Amer. Meteor. Soc.,77, 1233–1246.

    • Crossref
    • Export Citation
  • Rosen, R. D., 1999: The global energy cycle. Global Energy and Water Cycles, K. A. Browning and R. J. Gurney, Eds., Cambridge University Press, 1–9.

  • Ross, R. J., and W. P. Elliott, 1996: Tropospheric water vapor climatology and trends over North America: 1973–93. J. Climate,9, 3561–3574.

    • Crossref
    • Export Citation
  • Slonaker, R. L., and M. L. Van Woert, 1999: Atmospheric moisture transport across the Southern Ocean via satellite observations. J. Geophys. Res.,104, 9229–9249.

    • Crossref
    • Export Citation
  • Sun, D.-Z., and A. H. Oort, 1995: Humidity–temperature relationships in the tropical troposphere. J. Climate,8, 1974–1987.

  • ——, and K. E. Trenberth, 1998: Coordinated heat removal from the equatorial Pacific during the 1986–87 El Niño. Geophys. Res. Lett.,25, 2659–2662.

    • Crossref
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc.,78, 2771–2777.

    • Crossref
    • Export Citation
  • ——, 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change,39, 667–694.

  • ——, 1999: The extreme weather events of 1997 and 1998. Consequences,5, 3–15.

  • ——, and T. J. Hoar, 1996: The 1990–1995 El Niño–Southern Oscillation event: Longest on record. Geophys. Res. Lett,23, 57–60.

    • Crossref
    • Export Citation
  • ——, and ——, 1997: El Niño and climate change. Geophys. Res. Lett.,24, 3057–3060.

    • Crossref
    • Export Citation
  • ——, and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn.,14, 213–231.

    • Crossref
    • Export Citation
  • Waliser, D. E., Z. Shi, J. R. Lanzante, and A. H. Oort, 1999: The Hadley circulation: Assessing NCEP/NCAR reanalysis and sparse in-situ estimates. Climate Dyn.,15, 719–735.

    • Crossref
    • Export Citation
  • Wang, X., P. H. Stone, and J. Marotzke, 1999: Global thermohaline circulation. Part I: Sensitivity to atmospheric moisture transport. J. Climate,12, 71–82.

    • Crossref
    • Export Citation
  • Wentz, F. J., and M. Schabel, 2000: Precise climate monitoring using complementary satellite data sets. Nature,403, 414–416.

    • Crossref
    • Export Citation
  • Zhai, P., and R. E. Eskridge, 1997: Atmospheric water vapor over China. J. Climate,10, 2643–2652.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 261 86 6
PDF Downloads 85 10 2