On the Efficacy of Combining Thermal and Microwave Satellite Data as Observational Constraints for Root-Zone Soil Moisture Estimation

Damian J. Barrett CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Damian J. Barrett in
Current site
Google Scholar
PubMed
Close
and
Luigi J. Renzullo CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by Luigi J. Renzullo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Data assimilation applications require the development of appropriate mathematical operators to relate model states to satellite observations. Two such “observation” operators were developed and used to examine the conditions under which satellite microwave and thermal observations provide effective constraints on estimated soil moisture. The first operator uses a two-layer surface energy balance (SEB) model to relate root-zone moisture with top-of-canopy temperature. The second couples SEB and microwave radiative transfer models to yield top-of-atmosphere brightness temperature from surface layer moisture content. Tangent linear models for these operators were developed to examine the sensitivity of modeled observations to variations in soil moisture. Assuming a standard deviation in the observed surface temperature of 0.5 K and maximal model sensitivity, the error in the analysis moisture content decreased by 11% for a background error of 0.025 m3 m−3 and by 29% for a background error of 0.05 m3 m−3. As the observation error approached 2 K, the assimilation of individual surface temperature observations provided virtually no constraint on estimates of soil moisture. Given the range of published errors on brightness temperature, microwave satellite observations were always a strong constraint on soil moisture, except under dense forest and in relatively dry soils. Under contrasting vegetation cover and soil moisture conditions, orthogonal information contained in thermal and microwave observations can be used to improve soil moisture estimation because limited constraint afforded by one data type is compensated by strong constraint from the other data type.

* Current affiliation: Centre for Water in the Minerals Industry, The University of Queensland, Brisbane, Queensland, Australia.

Corresponding author address: Damian J. Barrett, Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, QLD, Australia. Email: d.barrett@smi.uq.edu.au

This article included in the Catchment-scale Hydrological Modelling & Data Assimilation (CAHMDA) III special collection.

Abstract

Data assimilation applications require the development of appropriate mathematical operators to relate model states to satellite observations. Two such “observation” operators were developed and used to examine the conditions under which satellite microwave and thermal observations provide effective constraints on estimated soil moisture. The first operator uses a two-layer surface energy balance (SEB) model to relate root-zone moisture with top-of-canopy temperature. The second couples SEB and microwave radiative transfer models to yield top-of-atmosphere brightness temperature from surface layer moisture content. Tangent linear models for these operators were developed to examine the sensitivity of modeled observations to variations in soil moisture. Assuming a standard deviation in the observed surface temperature of 0.5 K and maximal model sensitivity, the error in the analysis moisture content decreased by 11% for a background error of 0.025 m3 m−3 and by 29% for a background error of 0.05 m3 m−3. As the observation error approached 2 K, the assimilation of individual surface temperature observations provided virtually no constraint on estimates of soil moisture. Given the range of published errors on brightness temperature, microwave satellite observations were always a strong constraint on soil moisture, except under dense forest and in relatively dry soils. Under contrasting vegetation cover and soil moisture conditions, orthogonal information contained in thermal and microwave observations can be used to improve soil moisture estimation because limited constraint afforded by one data type is compensated by strong constraint from the other data type.

* Current affiliation: Centre for Water in the Minerals Industry, The University of Queensland, Brisbane, Queensland, Australia.

Corresponding author address: Damian J. Barrett, Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, QLD, Australia. Email: d.barrett@smi.uq.edu.au

This article included in the Catchment-scale Hydrological Modelling & Data Assimilation (CAHMDA) III special collection.

Save
  • Anderson, M. C., Norman J. M. , Diak G. R. , Kustas W. P. , and Mecikalski J. R. , 1997: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ., 60 , 195216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Mecikalski J. R. , Otkin J. A. , and Kustas W. P. , 2007: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112 , D10117. doi:10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • Ashcroft, P., and Wentz F. J. , 2000: AMSR level 2A algorithm. Algorithm theoretical basis document, Remote Sensing Systems Tech. Rep. 121599B-1, 29 pp.

    • Search Google Scholar
    • Export Citation
  • Aubert, D., Loumange C. , Oudin L. , and Le Hegarat-Mascale S. , 2003: Assimilation of soil moisture into hydrological models: The sequential method. Can. J. Remote Sens., 29 , 711717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Australian Survey and Land Information Group, 1990: Vegetation. Vol. 6, Atlas of Australian Resources, Third Series, Department of Administrative Services, Commonwealth of Australia, 64 pp. [Available online at http://www.ga.gov.au/image_cache/GA10358.pdf].

    • Search Google Scholar
    • Export Citation
  • Bach, H., and Mauser W. , 2003: Methods and examples for remote sensing data assimilation in land surface process modelling. IEEE Trans. Geosci. Remote Sens., 41 , 16291637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barré, H. M. J. P., Duesmann B. , and Kerr Y. , 2008: SMOS: The mission and the system. IEEE Trans. Geosci. Remote Sens., 46 , 587593.

  • Barrett, D. J., 2002: Steady state turnover time of carbon in the Australian terrestrial biosphere. Global Biogeochem. Cycles, 16 , 1108. doi:10.1029/2002GB001860.

    • Search Google Scholar
    • Export Citation
  • Barrett, D. J., Hill M. J. , Hutley L. B. , Beringer J. , Xu J. H. , Cook G. D. , Carter J. O. , and Williams R. J. , 2005: Prospects for improved savanna biophysical models by using multiple-constraints model-data assimilation methods. Aust. J. Bot., 53 , 689714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, D. J., Kuzmin V. A. , Walker J. P. , McVicar T. R. , and Draper C. , 2008: Improving stream flow forecasting by integrating satellite observations, in situ data and catchment models using model-data assimilation methods. eWater Cooperative Research Centre Tech. Rep., 54 pp. [Available online at http://ewatercrc.com.au/reports/Barrett_et_al-2008-Flow_Forecasting.pdf].

    • Search Google Scholar
    • Export Citation
  • Becker, F., and Li Z-L. , 1990: Towards a local split window method over land surfaces. Int. J. Remote Sens., 11 , 369393.

  • Bell, D. T., and Williams J. E. , 1997: Eucalypt physiology. Eucalypt Ecology: Individuals to Ecosystems, J. E. Williams and J. C. Z. Woinarski, Eds., Cambridge University Press, 168–196.

    • Search Google Scholar
    • Export Citation
  • Boni, G., Entekhabi D. , and Castelli F. , 2001: Land data assimilation with satellite measurements for the estimation of surface energy balance components and surface control on evaporation. Water Resour. Res., 37 , 17131722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boussetta, S., Koike T. , Yang K. , Graf T. , and Pathmathevan M. , 2008: Development of a coupled land–atmosphere satellite data assimilation system for improved local atmospheric simulations. Remote Sens. Environ., 112 , 720734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F., and Courtier P. , 1999: Data assimilation concepts and methods. Meteorological Training Course Lecture Notes, ECMWF, 58 pp.

    • Search Google Scholar
    • Export Citation
  • Brown, M. A., Torres F. , Corbella I. , and Colliander A. , 2008: SMOS Calibration. IEEE Trans. Geosci. Remote Sens., 46 , 646658.

  • Cai, W. J., and Cowan T. , 2008: Evidence of impacts from rising temperature on inflows to the Murray-Darling Basin. Geophys. Res. Lett., 35 , L07701. doi:10.1029/2008GL033390.

    • Search Google Scholar
    • Export Citation
  • Caparrini, F., Castelli F. , and Entekhabi D. , 2004: Estimation of surface turbulent fluxes through assimilation of radiometric surface temperature sequences. J. Hydrometeor., 5 , 145159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T., 2007: An overview of the “Triangle Method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors, 7 , 16121629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., Huntingford C. , and Harding R. J. , 1998: A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol., 212-213 , 7994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosson, W. L., Laymon C. A. , Inguva R. , and Schamschula M. P. , 2002: Assimilating remote sensing data in a surface flux-soil moisture model. Hydrol. Processes, 16 , 16451662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., Drusch M. , and Wood E. F. , 2001: An observation system simulation experiment for the impact of land surface heterogeneity on AMSR-E soil moisture retrievals. IEEE Trans. Geosci. Remote Sens., 39 , 16221631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., Kustas W. P. , and Prueger J. H. , 2008: Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model. Remote Sens. Environ., 112 , 12681281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Jeu, R. A. M., and Owe M. , 2003: Further validation of a new methodology for surface moisture and vegetation optical depth retrieval. Int. J. Remote Sens., 22 , 45594578.

    • Search Google Scholar
    • Export Citation
  • de Lannoy, G. J. M., Reichle R. H. , Houser P. R. , Pauwels V. R. N. , and Verhoest N. E. C. , 2007: Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resour. Res., 43 , W09410. doi:10.1029/2006WR005449.

    • Search Google Scholar
    • Export Citation
  • Dobson, M. C., Ulaby F. T. , Hallikainen M. T. , and El-Rayes M. A. , 1985: Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens., GE-23 , 3546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draper, C. S., Walker J. P. , Steinle P. J. , de Jeu R. A. M. , and Holmes T. R. H. , 2009: An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens. Environ., 113 , 703710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., Nakamura H. , and Njoku E. G. , 1994: Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Trans. Geosci. Remote Sens., 32 , 438448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78 , 25772591.

  • Friedl, M. A., 1995: Modeling land surface fluxes using sparse canopy model and radiometric surface temperature measurements. J. Geophys. Res., 100 , (D12). 2543525466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., 2002: Forward and inverse modeling of land surface energy balance using surface temperature measurements. Remote Sens. Environ., 79 , 344354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, H., Wood E. F. , Jackson T. J. , Drusch M. , and Bindlish R. , 2006: Using TRMM/TMI to retrieve surface soil moisture over the southern United States from 1998–2002. J. Hydrometeor., 7 , 2338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giering, R., 2000: Tangent linear and adjoint biogeochemical models. Inverse Methods in Global Biogeochemical Cycles, Geophys. Monogr., Vol. 114, Amer. Geophys. Union, 33–48.

    • Search Google Scholar
    • Export Citation
  • Giering, R., and Kaminski T. , 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24 , 437474.

  • Gillespie, A., Rokugawa S. , Matsuna T. , Cothern J. S. , Hook S. , and Kahle A. B. , 1998: A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens., 36 , 11131126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillies, R. R., and Carlson T. N. , 1995: Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. J. Appl. Meteor., 34 , 745756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heathman, G. C., Starks P. J. , Ahuja L. R. , and Jackson T. J. , 2003: Assimilation of surface soil moisture to estimate profile soil water content. J. Hydrol., 279 , 117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, M. J., Senarath U. , Lee A. , Zeppel M. , Nightingale J. M. , Williams R. J. , and McVicar T. R. , 2006: Assessment of the MODIS LAI product for Australian ecosystems. Remote Sens. Environ., 101 , 495518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C., Li X. , and Lu L. , 2008: Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter. Remote Sens. Environ., 112 , 13201336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. B., Canadell J. , Ehleringer J. R. , Mooney H. A. , Sala O. E. , and Schulze E. D. , 1996: A global analysis of root distributions for terrestrial biomes. Oecologia, 108 , 389411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, B273 , 593610.

    • Search Google Scholar
    • Export Citation
  • Jeffrey, S. J., Carter J. O. , Moodie K. B. , and Beswick A. R. , 2001: Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Software, 16 , 309330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A. S., Vukicevic T. , and Vonder Haar T. H. , 2004: A microwave satellite observational operator for variational data assimilation of soil moisture. J. Hydrometeor., 5 , 213229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, H. G., 1992: Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Cambridge University Press, 428 pp.

    • Search Google Scholar
    • Export Citation
  • Key, J. R., Collins J. B. , Fowler C. , and Stone R. S. , 1997: High-latitude surface temperature estimates from thermal satellite data. Remote Sens. Environ., 61 , 302309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, E. A., 2003: The Australian AVHRR data set at CSIRO/EOC: Origins, processes, holdings and prospects. CSIRO Earth Observation Centre Rep. 2003/04, 51 pp. [Available online at http://www.eoc.csiro.au/tech_reps/2003/tr2003_04.pdf].

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1 , 2646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Norman J. M. , 1999: Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric. For. Meteor., 94 , 1325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., Gao H. , and Wood E. F. , 2005: Evaluation of AMSR-E-derived soil moisture retrievals using ground-based and PSR airborne data during SMEX02. J. Hydrometeor., 6 , 864876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., Wood E. F. , Wojcik R. , Pan M. , Sheffield J. , Gao H. , and Su H. , 2008: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies. Remote Sens. Environ., 112 , 430444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKenzie, N., and Hook J. , 1992: Interpretation of the Atlas of Australian Soils. Consulting report to the Environmental Resources Information Network (ERIN), CSIRO Division of Soils Tech. Rep. 94/1992, 7 pp.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., Diak G. R. , Anderson M. C. , and Norman J. M. , 1999: Estimating fluxes on continental scales using remotely sensed data in an atmosphere–land exchange model. J. Appl. Meteor., 38 , 13521369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mein, R. G., and Larson C. L. , 1973: Modeling infiltration during steady rain. Water Resour. Res., 9 , 384394.

  • Merlin, O., Chehbouni A. , Boulet G. , and Kerr Y. , 2006: Assimilation of disaggregated microwave soil moisture into hydrologic model using coarse-scale meteorological data. J. Hydrometeor., 7 , 13081322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, T., Choudhury B. J. , Schmugge T. J. , Wang J. R. , and Jackson T. J. , 1982: A model for the microwave emission from vegetation-covered fields. J. Geophys. Res., 87 , (C18). 1122911238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Momemi, M., and Saradjian M. R. , 2007: Evaluating NDVI-based emissivities of MODIS bands 31 and 32 using emissivities derived by day/night LST algorithm. Remote Sens. Environ., 106 , 190198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and environment. The State and Movement of Water in Living Organisms, G. E. Fogg, Ed., Proceedings of the Symposium of the Society of Experimental Biology, Vol. 19, Academic Press, 205–234.

    • Search Google Scholar
    • Export Citation
  • Moran, M. S., Peters-Lidard C. D. , Watts J. M. , and McElroy S. , 2004: Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can. J. Remote Sens., 30 , 805826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., and Li L. , 1999: Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz. IEEE Trans. Geosci. Remote Sens., 37 , 7993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., Jackson T. J. , Lakshmi V. , Chan T. K. , and Nghiem S. V. , 2003: Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens., 41 , 215229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., Ashcroft P. , Chan T. K. , and Li L. , 2005: Global survey and statistics of radio-frequency interference in AMSR-E land observations. IEEE Trans. Geosci. Remote Sens., 43 , 938947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norman, J. M., and Coauthors, 2003: Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour. Res., 39 , 1221. doi:10.1029/2002WR001775.

    • Search Google Scholar
    • Export Citation
  • Oudin, L., Weisse A. , Loumange C. , and Le Hegarat-Mascle S. , 2003: Assimilation of soil moisture into hydrological models for flood forecasting: A variational approach. Can. J. Remote Sens., 29 , 679686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owe, M., de Jeu R. , and Walker J. , 2001: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens., 39 , 16431654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., Wood E. F. , Wojcik R. , and McCabe M. F. , 2008: Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sens. Environ., 112 , 12821294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinheiro, A. C. T., Descloitres J. , Privette J. L. , Susskind J. , Iredell L. , and Schmaltz J. , 2007: Near-real time retrievals of land surface temperature within the MODIS rapid response system. Remote Sens. Environ., 106 , 326336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pipunic, R. C., Walker J. P. , and Western A. , 2008: Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study. Remote Sens. Environ., 112 , 12951305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., Aires F. , Rossow W. B. , and Robock A. , 2005: Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: Relationship of satellite observations to in situ soil moisture measurements. J. Geophys. Res., 110 , D07110. doi:10.1029/2004JD005087.

    • Search Google Scholar
    • Export Citation
  • Qin, Z., Dall’Olmo G. , Karnieli A. , and Berliner P. , 2001: Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature. J. Geophys. Res., 106 , (D19). 2265522670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., Rayner P. J. , Barrett D. J. , DeFries R. , Heimann M. , Ojima D. S. , Quegan S. , and Schmullius C. , 2005: Model-data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications. Global Change Biol., 11 , 278397.

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., Ahuja L. R. , Brakensiek D. L. , and Shirmohammadi A. , 1993: Soil water movement and infiltration. Handbook of Hydrology, D. R. Maidment, Ed., McGraw Hill, 5.1–5.51.

    • Search Google Scholar
    • Export Citation
  • Reichle, D. B., Koster R. , Dong J. , and Berg A. , 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5 , 430442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and Koster R. D. , 2005: Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model. Geophys. Res. Lett., 32 , L02404. doi:10.1029/2004GL021700.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., McLaughlin D. B. , and Entekhabi D. , 2001: Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications. IEEE Trans. Geosci. Remote Sens., 39 , 17081718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., McLaughlin D. B. , and Entekhabi D. , 2002: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130 , 103114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renzullo, L. J., Barrett D. J. , Marks A. S. , Hill M. J. , Guerschman J. P. , Mu Q. , and Running S. W. , 2008: Multi-sensor model-data fusion for estimation of hydrologic and energy flux parameters. Remote Sens. Environ., 112 , 13061319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scipal, K., Scheffler C. , and Wagner W. , 2005: Soil moisture-runoff relation at the catchment scale as observed with coarse resolution microwave remote sensing. Hydrol. Earth Syst. Sci., 9 , 173183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., 1985: Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens., 6 , 13351372.

  • Shuttleworth, W. J., and Wallace J. S. , 1985: Evaporation from sparse crops—An energy combination theory. Quart. J. Roy. Meteor. Soc., 111 , 839855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobrino, J. A., and Raissouni N. , 2000: Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens., 21 , 353366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobrino, J. A., Gomez M. , Jimenez-Munoz J. C. , and Olioso A. , 2007: Application of a simple algorithm to estimate daily evapotranspiration from NOAA-AVHRR images for the Iberian Peninsula. Remote Sens. Environ., 110 , 139148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sòria, G., and Sobrino J. A. , 2007: ENVISAT/AATSR derived land surface temperature over a heterogeneous region. Remote Sens. Environ., 111 , 409422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D., and Pinker R. T. , 2005: Implementation of GOES-based land surface temperature diurnal cycle to AVHRR. Int. J. Remote Sens., 26 , 39753984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, W., Naeimi V. , Scipal K. , de Jeu R. , and Martinez-Fernandez J. , 2007: Soil moisture from operational meteorological satellites. Hydrogeol. J., 15 , 121131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. P., Willgoose G. R. , and Kalma J. D. , 2001: One-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: A simplified soil moisture model and field application. J. Hydrometeor., 2 , 356373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., 2008: New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens. Environ., 112 , 5974. doi:10.1016/j.rse.2006.06.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wan, Z., and Dozier J. , 1996: A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens., 34 , 892905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and Cai X. , 2008: Robust data assimilation in hydrological modeling – A comparison of Kalman and H-infinity filter. Adv. Water Resour., 31 , 455472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. R., and Schmugge T. J. , 1980: An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sens., 18 , 288295.

    • Search Google Scholar
    • Export Citation
  • Weerts, A. H., and El Serafy G. Y. H. , 2006: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resour. Res., 42 , W09403. doi:10.1029/2005WR004093.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., Privette J. L. , and Pinheiro A. C. , 2008: Evaluation of split-window land surface temperature algorithms for generating climate data records. IEEE Trans. Geosci. Remote Sens., 46 , 179192.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 927 266 51
PDF Downloads 251 84 9