LMODEL: A Satellite Precipitation Methodology Using Cloud Development Modeling. Part II: Validation

Kuo-lin Hsu University of California, Irvine, Irvine, California

Search for other papers by Kuo-lin Hsu in
Current site
Google Scholar
PubMed
Close
,
Tim Bellerby University of Hull, Hull, United Kingdom

Search for other papers by Tim Bellerby in
Current site
Google Scholar
PubMed
Close
, and
S. Sorooshian University of California, Irvine, Irvine, California

Search for other papers by S. Sorooshian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new satellite-based rainfall monitoring algorithm that integrates the strengths of both low Earth-orbiting (LEO) and geostationary Earth-orbiting (GEO) satellite information has been developed. The Lagrangian Model (LMODEL) algorithm combines a 2D cloud-advection tracking system and a GEO data–driven cloud development and rainfall generation model with procedures to update model parameters and state variables in near–real time. The details of the LMODEL algorithm were presented in Part I. This paper describes a comparative validation against ground radar rainfall measurements of 1- and 3-h LMODEL accumulated rainfall outputs. LMODEL rainfall estimates consistently outperform accumulated 3-h microwave (MW)-only rainfall estimates, even before the more restricted spatial coverage provided by the latter is taken into account. In addition, the performance of LMODEL products remains effective and consistent between MW overpasses. Case studies demonstrate that the LMODEL provides the potential to synergize available satellite data to generate useful precipitation measurements at an hourly scale.

Corresponding author address: T. J. Bellerby, Department of Geography, University of Hull, Hull HU6 7RX, United Kingdom. Email: t.j.bellerby@hull.ac.uk

Abstract

A new satellite-based rainfall monitoring algorithm that integrates the strengths of both low Earth-orbiting (LEO) and geostationary Earth-orbiting (GEO) satellite information has been developed. The Lagrangian Model (LMODEL) algorithm combines a 2D cloud-advection tracking system and a GEO data–driven cloud development and rainfall generation model with procedures to update model parameters and state variables in near–real time. The details of the LMODEL algorithm were presented in Part I. This paper describes a comparative validation against ground radar rainfall measurements of 1- and 3-h LMODEL accumulated rainfall outputs. LMODEL rainfall estimates consistently outperform accumulated 3-h microwave (MW)-only rainfall estimates, even before the more restricted spatial coverage provided by the latter is taken into account. In addition, the performance of LMODEL products remains effective and consistent between MW overpasses. Case studies demonstrate that the LMODEL provides the potential to synergize available satellite data to generate useful precipitation measurements at an hourly scale.

Corresponding author address: T. J. Bellerby, Department of Geography, University of Hull, Hull HU6 7RX, United Kingdom. Email: t.j.bellerby@hull.ac.uk

Save
  • Adams, D. K., and Comrie A. C. , 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Adler, R. F., and Mack R. A. , 1986: Thunderstorm cloud top dynamics as inferred from satellite observations and a cloud top parcel model. J. Atmos. Sci., 43 , 19451960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Negri A. J. , 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27 , 3038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Meisner B. N. , 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115 , 5174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., Mote T. L. , Dixon P. G. , Trotter S. L. , Powell E. J. , Durkee J. D. , and Grundstein A. J. , 2003: Distribution of mesoscale convective complex rainfall in the United States. Mon. Wea. Rev., 131 , 30033017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and Gruber A. , 2001: GOES Multispectral Rainfall Algorithm (GMSRA). J. Appl. Meteor., 40 , 15001514.

  • Bellerby, T., 2004: A feature-based approach to satellite precipitation monitoring using geostationary IR imagery. J. Hydrometeor., 5 , 910921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellerby, T., 2006: High-resolution 2-D cloud-top advection from geostationary satellite imagery. IEEE Trans. Geosci. Remote Sens., 44 , 36393648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellerby, T., Todd M. , Kniveton D. , and Kidd C. , 2000: Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network. J. Appl. Meteor., 39 , 21152128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellerby, T., Hsu K. , and Sorooshian S. , 2009: LMODEL: A satellite precipitation methodology using cloud development modeling. Part I: Algorithm construction and calibration. J. Hydrometeor., 10 , 10811095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capacci, D., and Conway B. J. , 2005: Delineation of precipitation areas from MODIS visible and infrared imagery with artificial neural networks. Meteor. Appl., 12 , 291305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Court, A., 1974: The climate of the conterminus United States. Climates of North America, R. A. Bryson and F. K. Hare, Eds., Vol. 11, World Survey of Climatology, Elsevier, 193–261.

    • Search Google Scholar
    • Export Citation
  • CPC, cited. 2008: NOAA CPC merged microwave. [Available online at http://www.cpc.ncep.noaa.gov/products/janowiak/mwcomb_description.html].

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., Weng F. , Grody N. C. , and Zhao L. , 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27 , 26692672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., Hsu K. , Sorooshian S. , and Gao X. , 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43 , 18341852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horsfield, N., 2006: Development of a mass balance approach to modelling cloud lifecycles and rainfall using satellite observations. Ph.D. thesis, University of Hull, 353 pp.

  • Hou, A., Jackson G. S. , Kummerow C. , and Shepherd J. M. , 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation, and Prediction, S. Michaelides, Ed., Springer, 131–170.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36 , 11761190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ISDR, 2008: Early warning systems can save lives when cyclones strike. Press Release UN/ISDR 2008/05, 1 pp. [Available online at http://www.unisdr.org/eng/media-room/press-release/2008/pr-2008-06-myanmar-cyclone-nargis.pdf].

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., Joyce R. J. , and Yarosh Y. , 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82 , 205217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., Kniveton D. R. , Todd M. C. , and Bellerby T. J. , 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4 , 10881104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: Evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm].

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., Rossow W. B. , Guedes R. L. , and Walker A. W. , 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126 , 16301654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martine, G., and Marshall A. , 2007: UNFPA State of World Population, 2007: Unleashing the Potential of Urban Growth. United Nations Population Fund, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., Palmacci M. , Cimini D. , Giuliani G. , and Turk F. J. , 2004: Multivariate statistical integration of satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale. IEEE Trans. Geosci. Remote Sens., 42 , 10181032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and Coauthors, 2003a: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: Validation of GPCC rainfall product and pre-TRMM satellite and blended products. J. Appl. Meteor., 42 , 13371354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and Coauthors, 2003b: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteor., 42 , 13551368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okamoto, K., Iguchi T. , Takahashi N. , Iwanami K. , and Ushio T. , 2005: The Global Satellite Mapping of Precipitation (GSMaP) project. Proc. Int. Geoscience and Remote Sensing Symp., Seoul, South Korea, Institute of Electrical and Electronics Engineers, 3414–3416.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., Adler R. F. , and North G. R. , 1988: A proposed Tropical Rainfall Measurement Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69 , 278295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., Qin D. , Manning M. , Marquis M. , Averyt K. , Tignor M. M. B. , Miller H. L. Jr., and Chen Z. , 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, M., Kidd C. , Kniveton D. R. , and Bellerby T. J. , 2001: A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall. J. Atmos. Oceanic Technol., 18 , 742755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and Miller S. D. , 2005: Toward improving estimates of remotely-sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43 , 10591069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente, G., Scofield R. A. , and Mensel W. P. , 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79 , 18811898.

    • Search Google Scholar
    • Export Citation
  • Weng, F., Zhao L. , Ferraro R. , Pre G. , Li X. , and Grody N. C. , 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38 , 8068. doi:10.1029/2002RS002679.

    • Search Google Scholar
    • Export Citation
  • Xu, L., Gao X. , Sorooshian S. , Arkin P. A. , and Imam B. , 1999: A microwave infrared threshold technique to improve the GOES precipitation index. J. Appl. Meteor., 38 , 569579.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 189 70 19
PDF Downloads 98 44 6