Bias Adjustment of Satellite Precipitation Estimation Using Ground-Based Measurement: A Case Study Evaluation over the Southwestern United States

Farid Ishak Boushaki Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Farid Ishak Boushaki in
Current site
Google Scholar
PubMed
Close
,
Kuo-Lin Hsu Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Kuo-Lin Hsu in
Current site
Google Scholar
PubMed
Close
,
Soroosh Sorooshian Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Soroosh Sorooshian in
Current site
Google Scholar
PubMed
Close
,
Gi-Hyeon Park Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Gi-Hyeon Park in
Current site
Google Scholar
PubMed
Close
,
Shayesteh Mahani NOAA/CREST Center, Civil Engineering Department, City College of New York, City University of New York, New York, New York

Search for other papers by Shayesteh Mahani in
Current site
Google Scholar
PubMed
Close
, and
Wei Shi NOAA/Climate Prediction Center, Camp Springs, Maryland

Search for other papers by Wei Shi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reliable precipitation measurement is a crucial component in hydrologic studies. Although satellite-based observation is able to provide spatial and temporal distribution of precipitation, the measurements tend to show systematic bias. This paper introduces a grid-based precipitation merging procedure in which satellite estimates from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Cloud Classification System (PERSIANN–CCS) are adjusted based on the Climate Prediction Center (CPC) daily rain gauge analysis. To remove the bias, the hourly CCS estimates were spatially and temporally accumulated to the daily 1° × 1° scale, the resolution of CPC rain gauge analysis. The daily CCS bias was then downscaled to the hourly temporal scale to correct hourly CCS estimates. The bias corrected CCS estimates are called the adjusted CCS (CCSA) product. With the adjustment from the gauge measurement, CCSA data have been generated to provide more reliable high temporal/spatial-resolution precipitation estimates. In the case study, the CCSA precipitation estimates from the proposed approach are compared against ground-based measurements in high-density gauge networks located in the southwestern United States.

Corresponding author address: Kuo-Lin Hsu, Civil and Environmental Engineering, University of California, Irvine, 34130 Engineering Gateway, Irvine, CA 92697-2175. Email: kuolinh@uci.edu

Abstract

Reliable precipitation measurement is a crucial component in hydrologic studies. Although satellite-based observation is able to provide spatial and temporal distribution of precipitation, the measurements tend to show systematic bias. This paper introduces a grid-based precipitation merging procedure in which satellite estimates from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Cloud Classification System (PERSIANN–CCS) are adjusted based on the Climate Prediction Center (CPC) daily rain gauge analysis. To remove the bias, the hourly CCS estimates were spatially and temporally accumulated to the daily 1° × 1° scale, the resolution of CPC rain gauge analysis. The daily CCS bias was then downscaled to the hourly temporal scale to correct hourly CCS estimates. The bias corrected CCS estimates are called the adjusted CCS (CCSA) product. With the adjustment from the gauge measurement, CCSA data have been generated to provide more reliable high temporal/spatial-resolution precipitation estimates. In the case study, the CCSA precipitation estimates from the proposed approach are compared against ground-based measurements in high-density gauge networks located in the southwestern United States.

Corresponding author address: Kuo-Lin Hsu, Civil and Environmental Engineering, University of California, Irvine, 34130 Engineering Gateway, Irvine, CA 92697-2175. Email: kuolinh@uci.edu

Save
  • Adler, R. F., Negri J. A. , Keehn P. R. , and Hakkarinen I. M. , 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor., 32 , 335356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Huffman G. J. , Bolvin D. T. , Curtis S. , and Nelkin E. J. , 2000: Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J. Appl. Meteor., 39 , 20072023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and Gruber A. , 2001: GOES multispectral rainfall algorithm (GMSRA). J. Appl. Meteor., 40 , 15001514.

  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Bellerby, T., Todd M. , Kniveton D. , and Kidd C. , 2000: Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network. J. Appl. Meteor., 39 , 21152128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., Phillips A. B. , and North G. R. , 2003: Comparison of TRMM rainfall retrievals with rain gauge data from the TAO/TRITON buoy array. Geophys. Res. Lett., 30 , 1757. doi:10.1029/2003GL017552.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Droegemeier, K. K., and Coauthors, 2000: Hydrological aspects of weather prediction and flood warnings: Report of the Ninth Prospectus Development Team of the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 81 , 26652680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1963: Objective Analysis of Meteorological Fields (in Russian). Gidrometeorologicheskoe Izdate’stvo, 286 pp.

  • Gochis, D. J., Brito-Castillo L. , and Shuttleworth W. J. , 2006: Hydroclimatology of the North American Monsoon region in Northwest Mexico. J. Hydrol., 316 , 5370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, and Easterling D. R. , 1994: Variability and trends of total precipitation and snowfall over the United States and Canada. J. Climate, 7 , 184205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, A., Su X. , Kanamitsu M. , and Schemm J. , 2000: The comparison of two merged rain gauge satellite precipitation datasets. Bull. Amer. Meteor. Soc., 81 , 26312644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Shi W. , Yarosh E. , and Joyce R. , 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., Hsu K. L. , Sorooshian S. , and Gao X. , 2004: Precipitation estimation from remotely sensed information using an artificial neural network-cloud classification systems. J. Appl. Meteor., 43 , 18341852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., Gochis D. , Cheng J. , Hsu K-L. , and Sorooshian S. , 2007: Evaluation of PERSIANN-CCS rainfall measurement using the NAME Event Rain Gauge Network. J. Hydrometeor., 8 , 469482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36 , 11761190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gupta H. V. , Gao X. , and Sorooshian S. , 1999: Estimation of physical variables from multi-channel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res., 35 , 16051618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huff, F. A., 1970: Sampling errors in measurement of mean precipitation. J. Appl. Meteor., 9 , 3544.

  • Huffman, G. J., 1997: Estimates of root-mean-square random error for finite samples of estimated precipitation. J. Appl. Meteor., 36 , 11911201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffee, I. T., and Stephenson D. B. , 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. Wiley and Sons, 254 pp.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., 1993: Biases in precipitation gauge measurements. Global observations, analysis and simulation of precipitation, World Climate Programme Research Rep. WCRP-78, 31–34.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., Bauer P. , and Turk F. J. , 2007: Measuring Precipitation from Space: EURAINSAT and the Future. Advances in Global Change Research, Vol. 28, Springer, 722 pp.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Marzano, F. S., Palmacci M. , Cimino D. , Giuliano G. , and Turk F. J. , 2004: Multivariate statistical integration of satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale. IEEE Trans. Geosci. Remote Sens., 42 , 10181032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., Gruber A. , and Ba M. B. , 2000: Discrepancy between gauges and satellite estimates of rainfall in equatorial Africa. J. Appl. Meteor., 39 , 666679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., Krajewski W. F. , Ferraro R. R. , and Ba M. B. , 2002: Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. J. Appl. Meteor., 41 , 10651080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morin, E., Maddox R. A. , Goodrich D. C. , and Sorooshian S. , 2005: Radar ZR relationship for summer monsoon storms in Arizona. Wea. Forecasting, 20 , 672679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrissey, M., 1991: Using sparse rain gauges to test satellite-based rainfall algorithm. J. Geophys. Res., 96 , 1856118571.

  • Reynolds, R. W., and Smith T. M. , 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Mintz Y. , 1988: Evaporation of rain falling from convective clouds as derived from radar measurements. J. Appl. Meteor., 27 , 209215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., and Oliver V. J. , 1977: A scheme for estimating convective rainfall from satellite imagery. NOAA Tech. Memo. NESS 86, U.S. Department of Commerce, 47 pp.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1985: Correction of precipitation measurements: Summary report. Proc. Workshop on the Correction of Precipitation Measurements, Zurich, Switzerland, World Meteorological Organization, 13–23.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and Krajewski W. F. , 1991: Estimation of the mean field bias of radar rainfall estimates. J. Appl. Meteor., 30 , 397412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., Arkin P. A. , Bates J. J. , and Huffman G. J. , 2006: Estimating bias of satellite-based precipitation estimates. J. Hydrometeor., 7 , 841856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K-L. , Gao X. , Gupta H. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., Kidd C. , Hsu K-L. , and Marzano F. S. , 2004: Neural networks in satellite rainfall estimation. Meteor. Appl., 11 , 8391.

  • Turk, F. J., Rohaly G. , Hawkins J. D. , Smith E. A. , Grose A. , Marzano F. S. , Mugnai A. , and Levizzani V. , 2000: Analysis and assimilation of rainfall from blended SSM/I, TRMM and geostationary satellite data. Proc. 10th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., 2.2. [Available online at http://ams.confex.com/ams/annual2000/techprogram/paper_147.htm].

    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., Scofield R. A. , and Menzel W. P. , 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79 , 18831898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and Matsuura K. , 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34 , 25772586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and Brandes E. A. , 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60 , 10481058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yilmaz, K. K., Hogue T. S. , Hsu K-L. , Sorooshian S. , Gupta H. V. , and Wagener T. , 2005: Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeor., 6 , 497517.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 832 363 31
PDF Downloads 574 175 12