Effects of Climate Variability on Water Storage in the Colorado River Basin

Ruud Hurkmans Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, Netherlands

Search for other papers by Ruud Hurkmans in
Current site
Google Scholar
PubMed
Close
,
Peter A. Troch Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona

Search for other papers by Peter A. Troch in
Current site
Google Scholar
PubMed
Close
,
Remko Uijlenhoet Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, Netherlands

Search for other papers by Remko Uijlenhoet in
Current site
Google Scholar
PubMed
Close
,
Paul Torfs Hydrology and Quantitative Water Management Group, Wageningen University, Wageningen, Netherlands

Search for other papers by Paul Torfs in
Current site
Google Scholar
PubMed
Close
, and
Matej Durcik Sustainability of Semi-Arid Hydrology and Riparian Areas, Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona

Search for other papers by Matej Durcik in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding the long-term (interannual–decadal) variability of water availability in river basins is paramount for water resources management. Here, the authors analyze time series of simulated terrestrial water storage components, observed precipitation, and discharge spanning 74 yr in the Colorado River basin and relate them to climate indices that describe variability of sea surface temperature and sea level pressure in the tropical and extratropical Pacific. El Niño–Southern Oscillation (ENSO) indices in winter [January–March (JFM)] are related to winter precipitation as well as to soil moisture and discharge in the lower Colorado River basin. The low-frequency mode of the Pacific decadal oscillation (PDO) appears to be strongly correlated with deep soil moisture. During the negative PDO phase, saturated storage anomalies tend to be negative and the “amplitudes” (mean absolute anomalies) of shallow soil moisture, snow, and discharge are slightly lower compared to periods of positive PDO phases. Predicting interannual variability, therefore, strongly depends on the capability of predicting PDO regime shifts. If indeed a shift to a cool PDO phase occurred in the mid-1990s, as data suggest, the current dry conditions in the Colorado River basin may persist.

Corresponding author address: Ruud Hurkmans, Hydrology and Quantitative Water Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, Netherlands. Email: ruud.hurkmans@wur.nl

Abstract

Understanding the long-term (interannual–decadal) variability of water availability in river basins is paramount for water resources management. Here, the authors analyze time series of simulated terrestrial water storage components, observed precipitation, and discharge spanning 74 yr in the Colorado River basin and relate them to climate indices that describe variability of sea surface temperature and sea level pressure in the tropical and extratropical Pacific. El Niño–Southern Oscillation (ENSO) indices in winter [January–March (JFM)] are related to winter precipitation as well as to soil moisture and discharge in the lower Colorado River basin. The low-frequency mode of the Pacific decadal oscillation (PDO) appears to be strongly correlated with deep soil moisture. During the negative PDO phase, saturated storage anomalies tend to be negative and the “amplitudes” (mean absolute anomalies) of shallow soil moisture, snow, and discharge are slightly lower compared to periods of positive PDO phases. Predicting interannual variability, therefore, strongly depends on the capability of predicting PDO regime shifts. If indeed a shift to a cool PDO phase occurred in the mid-1990s, as data suggest, the current dry conditions in the Colorado River basin may persist.

Corresponding author address: Ruud Hurkmans, Hydrology and Quantitative Water Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, Netherlands. Email: ruud.hurkmans@wur.nl

Save
  • Cañon, J., González J. , and Valdés J. , 2007: Precipitation in the Colorado River Basin and its low frequency associations with PDO and ENSO signals. J. Hydrol., 333 , 252264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., Redmond K. T. , and Riddle L. G. , 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12 , 28812893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J. E., Overpeck J. T. , and Cook E. R. , 2002: Multiyear La Niña events and persistent drought in the contiguous United States. Geophys. Res. Lett., 29 , 1647. doi:10.1029/2001GL013561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E., Woodhouse C. , Eakin C. M. , Meko D. , and Stahle D. , 2004: Long-term aridity changes in the western United States. Science, 306 , 10151018. doi:10.1126/science.1102586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressie, N. A. C., 1991: Statistics for Spatial Data. Wiley, 900 pp.

  • Gershunov, A., and Barnett T. P. , 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79 , 27152725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Brito-Castillo L. , and Shuttleworth W. J. , 2007: Correlations between sea-surface temperatures and warm season streamflow in northwest Mexico. Int. J. Climatol., 27 , 883901. doi:10.1002/joc.1436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and Lettenmaier D. P. , 2005: Production of temporally consistent gridded precipitation and temperature fields for the continental United States. J. Hydrometeor., 6 , 330336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., Mote P. W. , Clark M. P. , and Lettenmaier D. P. , 2007: Twentieth-century trends in runoff, evapotranspiration, and soil moisture in the western United States. J. Climate, 20 , 14681486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, S-C., Shum C. K. , Jekeli C. , and Alsdorf D. , 2005: Improved estimation of terrestrial water storage changes from GRACE. Geophys. Res. Lett., 32 , L07302. doi:10.1029/2005GL022382.

    • Search Google Scholar
    • Export Citation
  • Hasan, S., 2009: Terrestrial water storage change from temporal gravity variation. Ph.D. thesis, Wageningen University, 83 pp.

  • Hidalgo, H. G., and Dracup J. A. , 2003: ENSO and PDO effects on hydroclimatic variations of the upper Colorado River Basin. J. Hydrometeor., 4 , 523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, M., Seneviratne S. I. , and Schär C. , 2006: Seasonal variations in terrestrial water storage for major midlatitude river basins. J. Hydrometeor., 7 , 3960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., and Feng S. , 2001: Variations of teleconnection of ENSO and interannual variation in summer rainfall in the central United States. J. Climate, 14 , 24692480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, A., 2007: Prediction skill of the NAO and PNA from daily to seasonal time scales. J. Climate, 20 , 19571975.

  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 , (D7). 1441514458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDonald, G. M., and Case R. A. , 2005: Variations in the Pacific Decadal Oscillation over the past millennium. Geophys. Res. Lett., 32 , L08703. doi:10.1029/2005GL022478.

    • Search Google Scholar
    • Export Citation
  • Maity, R., and Kumar D. N. , 2008: Basin-scale stream-flow forecasting using the information of large-scale atmospheric circulation phenomena. Hydrol. Processes, 22 , 643650. doi:10.1002/hyp.6630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and Hare S. R. , 2002: The Pacific Decadal Oscillation. J. Oceanogr., 58 , 3544.

  • Mantua, N. J., Hare S. R. , Zhang Y. , Wallace J. M. , and Francis R. C. , 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., Palecki M. A. , and Betancourt J. L. , 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101 , 41364141. doi:10.1073/pnas.0306738101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface tempperatures. J. Climate, 20 , 23332355.

  • Niu, G-Y., and Yang Z-L. , 2006: Assessing a land surface model’s improvements with GRACE estimates. Geophys. Res. Lett., 33 , L07401. doi:10.1029/2005GL025555.

    • Search Google Scholar
    • Export Citation
  • Okin, G. S., and Reheis M. C. , 2002: An ENSO predictor of dust emission in the southwestern United States. Geophys. Res. Lett., 29 , 1332. doi:10.1029/2001GL014494.

    • Search Google Scholar
    • Export Citation
  • Redmond, K. T., and Koch R. W. , 1991: Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices. Water Resour. Res., 27 , 23812399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316 , 11811184. doi:10.1126/science.1139601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Viterbo P. , Lüthi D. , and Schär C. , 2004: Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River basin. J. Climate, 17 , 20392057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., and Milly P. C. D. , 2006: Climate model biases in seasonality of continental water storage revealed by satellite gravimetry. Water Resour. Res., 42 , W03201. doi:10.1029/2005WR004628.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., Bettadpur S. , Watkins M. , and Reigber C. , 2004: The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31 , L09607. doi:10.1029/2004GL019920.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78 , 27712777.

  • Troch, P. A., Durcik M. , Seneviratne S. I. , Hirschi M. , Teuling A. J. , Hurkmans R. , and Hasan S. , 2007: New data sets to estimate terrestrial water storage change. EOS, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO450001.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., and Timlin M. S. , 1998: Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 53 , 315323.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 360 165 15
PDF Downloads 158 71 4