Stochastic Precipitation Generation Based on a Multivariate Autoregression Model

Oleg V. Makhnin New Mexico Institute of Mining and Technology, Socorro, New Mexico

Search for other papers by Oleg V. Makhnin in
Current site
Google Scholar
PubMed
Close
and
Devon L. McAllister nCode International, Starkville, Mississippi

Search for other papers by Devon L. McAllister in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The problem of stochastic precipitation generation has long been of interest. A good generator should produce time series with statistical properties to match those of the real precipitation. Here, a multivariate autoregression model designed to capture the covariance and lag-1 cross-covariance structure of the precipitation measurements is presented. A truncated and power-transformed normal distribution is used to simultaneously model both occurrences and amounts of daily precipitation. The methodology is illustrated using daily rain gauge datasets for three areas in the continental United States.

Corresponding author address: Oleg V. Makhnin, Dept. of Mathematics, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801. Email: olegm@nmt.edu

Abstract

The problem of stochastic precipitation generation has long been of interest. A good generator should produce time series with statistical properties to match those of the real precipitation. Here, a multivariate autoregression model designed to capture the covariance and lag-1 cross-covariance structure of the precipitation measurements is presented. A truncated and power-transformed normal distribution is used to simultaneously model both occurrences and amounts of daily precipitation. The methodology is illustrated using daily rain gauge datasets for three areas in the continental United States.

Corresponding author address: Oleg V. Makhnin, Dept. of Mathematics, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801. Email: olegm@nmt.edu

Save
  • Apipattanavis, S., Podestá G. , Rajagopalan B. , and Katz R. W. , 2007: A semiparametric multivariate and multisite weather generator. Water Resour. Res., 43 , W11401. doi:10.1029/2006WR005714.

    • Search Google Scholar
    • Export Citation
  • Bárdossy, A., and Plate E. J. , 1992: Space-time model for daily rainfall using atmospheric circulation patterns. Water Resour. Res., 285 , 12471259.

    • Search Google Scholar
    • Export Citation
  • Brissette, F. P., Khalili M. , and Leconte R. , 2007: Efficient stochastic generation of multi-site synthetic precipitation data. J. Hydrol., 345 , 121133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eischeid, J. K., Pasteris P. A. , Diaz H. F. , Plantico M. S. , and Lott N. J. , 2000: Creating a serially complete, national daily time series of temperature and precipitation for the western United States. J. Appl. Meteor., 39 , 15801591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furrer, E., and Katz R. W. , 2007: Generalized linear modeling approach to stochastic weather generators. Climate Res., 34 , 129144.

  • Gelman, A., Carlin J. B. , Stern H. S. , and Rubin D. B. , 2004: Bayesian Data Analysis. 2nd ed. Chapman & Hall/CRC, 668 pp.

  • Higdon, D., 2007: A primer on space-time modeling from a Baeysian perspective. Statistical Methods for Spatio-Temporal Systems, B. Finkenstadt, L. Held, and V. Isham, Eds., Chapman & Hall, 217–280.

    • Search Google Scholar
    • Export Citation
  • Hutchinson, M. F., Richardson C. W. , and Dyke P. T. , 1993: Normalization of rainfall across different time steps. Management of Irrigation and Drainage Systems: Integrated Perspectives, ASCE, 432–439.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and Parlange M. B. , 1998: Overdispersion phenomenon in stochastic modeling of precipitation. J. Climate, 11 , 591601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehrotra, R., and Sharma A. , 2007: A semi-parametric model for stochastic generation of multi-site daily rainfall exhibiting low-frequency variability. J. Hydrol., 335 , 180193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, cited. 2009: US station daily data. [Available online at http://www.esrl.noaa.gov/psd//data/usstations/].

  • R Development Core Team, 2009: R: A language and environment for statistical computing. R Foundation for Statistical Computing, 1671 pp.

    • Search Google Scholar
    • Export Citation
  • Richardson, C. W., 1981: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res., 17 , 182190.

  • Sansó, B., and Guenni L. , 2000: A nonstationary multisite model for rainfall. J. Amer. Stat. Assoc., 95 , 10891100.

  • Semenov, M. A., and Porter J. R. , 1995: Climatic variability and the modelling of crop yields. Agric. For. Meteor., 73 , 265283.

  • Stehlík, J., and Bárdossy A. , 2002: Multivariate stochastic downscaling model for generating daily precipitation series based on atmospheric circulation. J. Hydrol., 256 , 120141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stidd, C. K., 1973: Estimating the precipitation climate. Water Resour. Res., 9 , 12351241.

  • Todorovic, P., and Woolhiser D. A. , 1975: A stochastic model of n-day precipitation. J. Appl. Meteor., 14 , 1724.

  • Wang, J. Y., Anderson B. T. , and Salvucci G. D. , 2006: Stochastic modeling of daily summertime rainfall over the southwestern United States. Part I: Interannual variability. J. Hydrometeor., 7 , 739754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., Wigley T. M. L. , Conway D. , Jones P. D. , Hewitson B. C. , Main J. , and Wilks D. S. , 1998: Statistical downscaling of general circulation model output: A comparison of methods. Water Resour. Res., 34 , 29953008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1998: Multisite generalization of a daily stochastic precipitation generation model. J. Hydrol., 210 , 178191.

  • Wilks, D. S., 1999: Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric. For. Meteor., 93 , 153169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2008: High-resolution spatial interpolation of weather generator parameters using local weighted regressions. Agric. For. Meteor., 148 , 111120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., and Wilby R. L. , 1999: The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr., 23 , 329347.

  • Yang, C., Chandler R. E. , Isham V. S. , and Wheater H. S. , 2005: Spatial-temporal rainfall simulation using generalized linear models. Water Resour. Res., 41 , W11415. doi:10.1029/2004WR003739.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 136 47 3
PDF Downloads 67 19 2