Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations

Sujay V. Kumar Science Applications International Corporation, Beltsville, and Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Sujay V. Kumar in
Current site
Google Scholar
PubMed
Close
,
Rolf H. Reichle Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Rolf H. Reichle in
Current site
Google Scholar
PubMed
Close
,
Randal D. Koster Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Randal D. Koster in
Current site
Google Scholar
PubMed
Close
,
Wade T. Crow Hydrology and Remote Sensing Laboratory, Agriculture Research Service, U.S. Department of Agriculture, Beltsville, Maryland

Search for other papers by Wade T. Crow in
Current site
Google Scholar
PubMed
Close
, and
Christa D. Peters-Lidard Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christa D. Peters-Lidard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Root-zone soil moisture controls the land–atmosphere exchange of water and energy, and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root-zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments, synthetic surface soil moisture observations are assimilated into four different models [Catchment, Mosaic, Noah, and Community Land Model (CLM)] using the ensemble Kalman filter. The authors demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root-zone information is higher when the surface–root zone coupling is stronger. The experiments also suggest that (faced with unknown true subsurface physics) overestimating surface–root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Last, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.

Corresponding author address: S. V. Kumar, Hydrological Sciences Branch, Code 614.3, Greenbelt, MD 20771. Email: sujay.v.kumar@nasa.gov

Abstract

Root-zone soil moisture controls the land–atmosphere exchange of water and energy, and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root-zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments, synthetic surface soil moisture observations are assimilated into four different models [Catchment, Mosaic, Noah, and Community Land Model (CLM)] using the ensemble Kalman filter. The authors demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root-zone information is higher when the surface–root zone coupling is stronger. The experiments also suggest that (faced with unknown true subsurface physics) overestimating surface–root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Last, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.

Corresponding author address: S. V. Kumar, Hydrological Sciences Branch, Code 614.3, Greenbelt, MD 20771. Email: sujay.v.kumar@nasa.gov

Save
  • Calvet, J-C., Noilhan J. , and Bessemoulin P. , 1998: Retrieving root-zone soil moisture from surface soil moisture of temperature estimates: A feasibility study based on field measurements. J. Appl. Meteor., 37 , 371386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capehart, W., and Carlson T. , 1997: Decoupling of surface and near-surface soil water content: A remote sensing perspective. Water Resour. Res., 33 , 13831395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Avissar R. , 1994: The impact of land-surface wetness heterogeneity on mesoscale heat fluxes. J. Appl. Meteor., 33 , 13231340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and Wood E. F. , 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26 , 137149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model (CLM). Bull. Amer. Meteor. Soc., 84 , 10131023.

  • Derber, J., Parrish D. , and Lord S. , 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6 , 538547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., 2007: Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF’s Integrated Forecast System and the TMI soil moisture data set. J. Geophys. Res., 112 , D03102. doi:10.1029/2006JD007478.

    • Search Google Scholar
    • Export Citation
  • Ek, M., Mitchell K. , Yin L. , Rogers P. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Engman, E. T., and Gurney R. J. , 1991: Remote Sensing in Hydrology. Van Nostrand Reinhold, 225 pp.

  • Entekhabi, D., Nakamura H. , and Njoku E. G. , 1994: Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely senses observations. IEEE Trans. Geosci. Remote Sens., 32 , 438448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heathman, G. C., Starks P. J. , Ahuja L. R. , and Jackson T. J. , 2003: Assimilation of surface soil moisture to estimate profile soil water content. J. Hydrol., 279 , 117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., 1986: Soil water modeling and remote sensing. IEEE Trans. Geosci. Remote Sens., GE-24 , 3746.

  • Jackson, T. J., 1993: Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Processes, 7 , 139152.

  • Kerr, Y. H., Waldteufel P. , Wigneron J-P. , Martinnuzzi J-M. , Font J. , and Berger M. , 2001: Soil moisture retrieval from space: The soil moisture and ocean salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39 , 17291735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 1996: Energy and water balance calculations in the mosaic LSM. Tech. Rep. Series on Global Modeling and Data Assimilation, Vol. 9, NASA Tech. Memo. 104606, 69 pp.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. J. Geophys. Res., 105 , (D20). 2480924822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5 , 10491063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostov, K. G., and Jackson T. J. , 1993: Estimating profile soil moisture from surface-layer measurements: A review. Ground Sensing, H. N. Nasr, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 1941), 125–136.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21 , 14021415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., Peters-Lidard C. , Eastman J. L. , and Tao W-K. , 2007: An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF. Environ. Modell. Software, 23 , 169181.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., Peters-Lidard C. , Tian Y. , Reichle R. H. , Geiger J. , Alonge C. , Eylander J. , and Houser P. , 2008a: An integrated hydrologic modeling and data assimilation framework. Computer, 41 , 5259. doi:10.1109/MC.2008.511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., Reichle R. , Peters-Lidard C. , Koster R. , Zhan X. , Crow W. , Eylander J. , and Houser P. , 2008b: A land surface data assimilation framework using the land information system: Description and applications. Adv. Water Resour., 31 , 14191432. doi:10.1016/j.advwatres.2008.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and Islam S. , 2002: Estimation of root zone soil moisture and surface fluxes partitioning using near surface soil moisture measurements. J. Hydrol., 259 , 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation system (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 , D07S90. doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Montaldo, N., Albertson J. D. , Mancini M. , and Kiely G. , 2001: Robust simulation of root zone soil moisture with assimilation of surface soil moisture data. Water Resour. Res., 37 , 28892900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2007: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. National Academies Press, 428 pp.

    • Search Google Scholar
    • Export Citation
  • Njoku, E. G., and Entekhabi D. , 1995: Passive microwave remote sensing of soil moisture. J. Hydrol., 184 , 101130.

  • Oglesby, R. J., 1991: Springtime soil moisture, natural climate variability, and North American drought as simulated by the NCAR Community Climate Model 1. J. Climate, 4 , 890897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2007: High-performance Earth system modeling with NASA/GSFC’s Land Information System. Innovations Syst. Software Eng., 3 , 157165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., and Koster R. , 2003: Assessing the impact of horizontal error correlations in background fields on soil moisture estimation. J. Hydrometeor., 4 , 12291242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., and Koster R. , 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31 , L19501. doi:10.1029/2004GL020938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., and Koster R. , 2005: Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model. Geophys. Res. Lett., 32 , L02404. doi:10.1029/2004GL021700.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., McLaughlin D. M. , and Entekhabi D. A. , 2002a: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130 , 103114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., Walker J. , Koster R. , and Houser P. , 2002b: Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor., 3 , 728740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R., Koster R. , Liu P. , Mahanama S. , Njoku E. , and Owe M. , 2007: Comparison and assimilation of global soil moisture retrievals from the advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112 , D09108. doi:10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Reichle, R., Crow W. , and Keppenne C. , 2008: An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour. Res., 44 , W03423. doi:10.1029/2007WR006357.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Schmugge, T. J., Jackson T. J. , and McKim H. L. , 1980: Survey of methods for soil moisture determination. Water Resour. Res., 16 , 961979.

  • Trier, S., Chen F. , and Manning K. , 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132 , 29542976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. P., Willgoose G. R. , and Kalma J. D. , 2001: One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: A simplified soil moisture model and field application. J. Hydrometeor., 2 , 356373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. P., Willgoose G. R. , and Kalma J. D. , 2002: Three-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: Simplified Kalman filter covariance forecasting and field application. Water Resour. Res., 38 , 1301. doi:10.1029/2002WR001545.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., McLaughlin D. , and Entekhabi D. , 2006: Assessing the performance of the ensemble Kalman filter for land surface data assimilation. Mon. Wea. Rev., 134 , 21282142.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1325 244 18
PDF Downloads 984 233 20