PERSIANN-MSA: A Precipitation Estimation Method from Satellite-Based Multispectral Analysis

Ali Behrangi Center for Hydrometeorology and Remote Sensing, The Henry Samueli School of Engineering, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Ali Behrangi in
Current site
Google Scholar
PubMed
Close
,
Kuo-lin Hsu Center for Hydrometeorology and Remote Sensing, The Henry Samueli School of Engineering, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Kuo-lin Hsu in
Current site
Google Scholar
PubMed
Close
,
Bisher Imam Center for Hydrometeorology and Remote Sensing, The Henry Samueli School of Engineering, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Bisher Imam in
Current site
Google Scholar
PubMed
Close
,
Soroosh Sorooshian Center for Hydrometeorology and Remote Sensing, The Henry Samueli School of Engineering, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Search for other papers by Soroosh Sorooshian in
Current site
Google Scholar
PubMed
Close
,
George J. Huffman NASA Goddard Space Flight Center Laboratory for Atmospheres, and Science Systems and Applications, Inc., Greenbelt, Maryland

Search for other papers by George J. Huffman in
Current site
Google Scholar
PubMed
Close
, and
Robert J. Kuligowski NOAA/NESDIS/Center for Satellite Applications and Research, Camp Springs, Maryland

Search for other papers by Robert J. Kuligowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Visible and infrared data obtained from instruments onboard geostationary satellites have been extensively used for monitoring clouds and their evolution. The Advanced Baseline Imager (ABI) that will be launched onboard the Geostationary Operational Environmental Satellite-R (GOES-R) series in the near future will offer a larger range of spectral bands; hence, it will provide observations of cloud and rain systems at even finer spatial, temporal, and spectral resolutions than are possible with the current GOES. In this paper, a new method called Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks–Multispectral Analysis (PERSIANN-MSA) is proposed to evaluate the effect of using multispectral imagery on precipitation estimation. The proposed approach uses a self-organizing feature map (SOFM) to classify multidimensional input information, extracted from each grid box and corresponding textural features of multispectral bands. In addition, principal component analysis (PCA) is used to reduce the dimensionality to a few independent input features while preserving most of the variations of all input information. The above method is applied to estimate rainfall using multiple channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. In comparison to the use of a single thermal infrared channel, the analysis shows that using multispectral data has the potential to improve rain detection and estimation skills with an average of more than 50% gain in equitable threat score for rain/no-rain detection, and more than 20% gain in correlation coefficient associated with rain-rate estimation.

Corresponding author address: Ali Behrangi, The Henry Samueli School of Engineering, Department of Civil and Environmental Engineering, E.4130, Engineering Gateway, Irvine, CA 92697-2175. Email: abehrang@uci.edu

Abstract

Visible and infrared data obtained from instruments onboard geostationary satellites have been extensively used for monitoring clouds and their evolution. The Advanced Baseline Imager (ABI) that will be launched onboard the Geostationary Operational Environmental Satellite-R (GOES-R) series in the near future will offer a larger range of spectral bands; hence, it will provide observations of cloud and rain systems at even finer spatial, temporal, and spectral resolutions than are possible with the current GOES. In this paper, a new method called Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks–Multispectral Analysis (PERSIANN-MSA) is proposed to evaluate the effect of using multispectral imagery on precipitation estimation. The proposed approach uses a self-organizing feature map (SOFM) to classify multidimensional input information, extracted from each grid box and corresponding textural features of multispectral bands. In addition, principal component analysis (PCA) is used to reduce the dimensionality to a few independent input features while preserving most of the variations of all input information. The above method is applied to estimate rainfall using multiple channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. In comparison to the use of a single thermal infrared channel, the analysis shows that using multispectral data has the potential to improve rain detection and estimation skills with an average of more than 50% gain in equitable threat score for rain/no-rain detection, and more than 20% gain in correlation coefficient associated with rain-rate estimation.

Corresponding author address: Ali Behrangi, The Henry Samueli School of Engineering, Department of Civil and Environmental Engineering, E.4130, Engineering Gateway, Irvine, CA 92697-2175. Email: abehrang@uci.edu

Save
  • Adler, R. F., and Negri A. J. , 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27 , 3051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Negri A. J. , Keehn P. R. , and Hakkarinen I. M. , 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor., 32 , 335356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. W., 2003: An Introduction to Multivariate Statistical Analysis. 3rd ed. Wiley, 752 pp.

  • Arkin, P. A., and Meisner B. N. , 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115 , 5174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arking, A., and Childs J. D. , 1985: Retrieval of cloud cover parameters from multispectral satellite images. J. Climate Appl. Meteor., 24 , 322333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and Gruber A. , 2001: GOES multispectral rainfall algorithm (GMSRA). J. Appl. Meteor., 40 , 15001514.

  • Behrangi, A., Hsu K. , Imam B. , Sorooshian S. , and Kuligowski R. J. , 2009: Evaluating the utility of multispectral information in delineating the areal extent of precipitation. J. Hydrometeor., 10 , 684700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellerby, T., Todd M. , Kniveton D. , and Kidd C. , 2000: Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network. J. Appl. Meteor., 39 , 21152128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellerby, T., Hsu K. , and Sorooshian S. , 2009: LMODEL: A satellite precipitation methodology using cloud development modeling. Part I: Algorithm construction and calibration. J. Hydrometeor., 10 , 10811095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capacci, D., and Conway B. J. , 2005: Delineation of precipitation areas from MODIS visible and infrared imagery with artificial neural networks. Meteor. Appl., 12 , 291305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, M., Brown R. , and Collier C. G. , 1993: Delineation of precipitation areas using Meteosat infrared and visible data in the region of the United Kingdom. J. Appl. Meteor., 32 , 884898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbois, M., Seze G. , and Szejwach G. , 1982: Automatic classification of clouds on Meteosat imagery: Application to high-level clouds. J. Appl. Meteor., 21 , 401412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., Woodley W. L. , Grube P. G. , Martin D. W. , Stout J. , and Sikdar D. N. , 1978: Rain estimation from geosynchronous satellite imagery—Visible and infrared studies. Mon. Wea. Rev., 106 , 11531171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., Hsu K. L. , Sorooshian S. , and Gao X. G. , 2004: Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43 , 18341852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A., Jackson G. S. , Kummerow C. , and Shepherd J. M. , 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation, and Prediction, S. Michaelides, Ed., Springer, 131–170.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gao X. G. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36 , 11761190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gupta H. V. , Gao X. G. , and Sorooshian S. , 1999: Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res., 35 , 16051618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., Bellerby T. , and Sorooshian S. , 2009: LMODEL: A satellite precipitation methodology using cloud development modeling. Part II: Validation. J. Hydrometeor., 10 , 10961108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrissey M. M. , Bolvin D. T. , Curtis S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, T., and Aonashi K. , 2000: A comparison of cloud and rainfall information from instantaneous visible and infrared scanner and precipitation radar observations over a frontal zone in East Asia during June 1998. J. Appl. Meteor., 39 , 22922301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 2002: Principal Component Analysis. Springer Series in Statistics, Vol. 29, Springer, 487 pp.

  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., Kniveton D. R. , Todd M. C. , and Bellerby T. J. , 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4 , 10881104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, P. W. S., Hogg W. D. , and Arkin P. A. , 1995: The role of visible data in improving satellite rain-rate estimates. J. Appl. Meteor., 34 , 16081621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 1982: Self-organized formation of topologically correct feature maps. Biol. Cybern., 43 , 5969.

  • Kuligowski, R. J., 2002: A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. J. Hydrometeor., 3 , 112130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Giglio L. , 1995: A method for combining passive microwave and infrared rainfall observations. J. Atmos. Oceanic Technol., 12 , 3345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurino, T., 1997: A satellite infrared technique for estimating “deep/shallow” precipitation. Adv. Space Res., 19 , 511514.

  • Lensky, I. M., and Rosenfeld D. , 2003: A night-rain delineation algorithm for infrared satellite data based on microphysical considerations. J. Appl. Meteor., 42 , 12181226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levizzani, V., and Setvák M. , 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53 , 361369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levizzani, V., Porcú F. , Marzano F. S. , Mugnai A. , Smith E. A. , and Prodi F. , 1996: Investigating a SSM/I microwave algorithm to calibrate Meteosat infrared instaneous rainrate estimates. Meteor. Appl., 3 , 517.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and Austin G. L. , 1979: The delineation of rain areas from visible and IR satellite data for GATE and mid-latitudes. Atmos.–Ocean, 17 , 7792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, D. W., Goodman B. , Schmit T. J. , and Cutrim E. C. , 1990: Estimation of daily rainfall over the Amazon basin. J. Geophys. Res., 95 , 1704317050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. W., Arkin P. A. , and Joyce R. , 2001: A combined microwave/infrared rain rate algorithm. Int. J. Remote Sens., 22 , 32853307.

  • Minnis, P., and Harrison E. F. , 1984: Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part I: Analysis method. J. Climate Appl. Meteor., 23 , 9931011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negri, A. J., Adler R. F. , and Wetzel P. J. , 1984: Rain estimation from satellites: An examination of the Griffith–Woodley technique. J. Climate Appl. Meteor., 23 , 102116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Sullivan, F., Wash C. H. , Stewart M. , and Motell C. E. , 1990: Rain estimation from infrared and visible GOES satellite data. J. Appl. Meteor., 29 , 209223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilewskie, P., and Twomey S. , 1987: Cloud phase discrimination by reflectance measurements near 1.6 and 2.2 μm. J. Atmos. Sci., 44 , 34193420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, N. X., Ou S. C. , and Liou K. N. , 1995: Removal of the solar component in AVHRR 3.7-μm radiances for the retrieval of cirrus cloud parameters. J. Appl. Meteor., 34 , 481499.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Gutman G. , 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos. Res., 34 , 259283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Lensky I. M. , 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79 , 24572476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5 , 570575.

  • Scherer, W. D., and Hudlow M. D. , 1971: A technique for assessing probable distributions of tropical precipitation echo lengths for X-band radar from Nimbus 3 HRIR data. BOMEX Bull., 10 , 6368.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., Pili P. , Tjemkes S. , Just D. , Kerkmann J. , Rota S. , and Ratier A. , 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83 , 977992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., Gunshor M. M. , Menzel W. P. , Gurka J. J. , Li J. , and Bachmeier A. S. , 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86 , 10791096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., 1987: The NESDIS operational convective precipitation estimation technique. Mon. Wea. Rev., 115 , 17731792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Setvák, M., and Doswell C. A. , 1991: The AVHRR channel 3 cloud top reflectivity of convective storms. Mon. Wea. Rev., 119 , 842847.

  • Setvák, M., Rabin R. M. , Doswell C. A. III, and Levizzani V. , 2003: Satellite observations of convective storm tops in the 1.6, 3.7 and 3.9 μm spectral bands. Atmos. Res., 67–68 , 589627.

    • Search Google Scholar
    • Export Citation
  • Shenk, W. E., Holub R. J. , and Neff R. A. , 1976: A multispectral cloud type identification method developed for tropical ocean areas with Nimbus-3 MRIR measurements. Mon. Wea. Rev., 104 , 284291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K. L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., Kidd C. , Hsu K. L. , and Marzano F. , 2004: Neural networks in satellite rainfall estimation. Meteor. Appl., 11 , 8391.

  • Todd, M. C., Kidd C. , Kniveton D. , and Bellerby T. J. , 2001: A combined satellite infrared and passive mcrowave technique for estimation of small-scale rainfall. J. Atmos. Oceanic Technol., 18 , 742755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., 1984: On the separability of various classes from the GOES visible and infrared data. J. Climate Appl. Meteor., 23 , 13931410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., and Isaac G. A. , 1985: On a new approach for instantaneous rain area delineation in the midlatitudes using GOES data. J. Climate Appl. Meteor., 24 , 12081218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and Miller S. D. , 2005: Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43 , 10591069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Hawkins J. , Smith E. A. , Marzano F. S. , Mugnai A. , and Levizzani V. , 2000: Combining SSM/I, TRMM and infrared geostationary satellite data in a near-real time fashion for rapid precipitation updates: Advantages and limitations. Proc. EUMETSAT Meteorological Satellite Data Users’ Conf., Bologna, Italy, EUMETSAT, 705–707.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Ebert E. E. , Oh H. J. , Sohn B. J. , Levizzani V. , Smith E. A. , and Ferraro R. R. , 2003: Validation of an operational global precipitation analysis at short time scales. Preprints, 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., JP1.2. [Available online at http://ams.confex.com/ams/annual2003/techprogram/paper_56865.htm].

    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., Scofield R. A. , and Menzel W. P. , 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79 , 18831898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Weinman J. A. , and Chin R. T. , 1985: Determination of rainfall rates from GOES satellite images by a pattern recognition technique. J. Atmos. Oceanic Technol., 2 , 314330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., Gao X. , Sorooshian S. , Arkin P. A. , and Imam B. , 1999: A microwave infrared threshold technique to improve the GOES precipitation index. J. Appl. Meteor., 38 , 569579.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 754 319 43
PDF Downloads 435 133 18