Simulation of Snow Water Equivalent (SWE) Using Thermodynamic Snow Models in Québec, Canada

A. Langlois Centre d’Applications et de Recherches en Télédétection, Université de Sherbrooke, Sherbrooke, Québec, Canada

Search for other papers by A. Langlois in
Current site
Google Scholar
PubMed
Close
,
J. Kohn Centre d’Applications et de Recherches en Télédétection, Université de Sherbrooke, Sherbrooke, Québec, Canada

Search for other papers by J. Kohn in
Current site
Google Scholar
PubMed
Close
,
A. Royer Centre d’Applications et de Recherches en Télédétection, Université de Sherbrooke, Sherbrooke, Québec, Canada

Search for other papers by A. Royer in
Current site
Google Scholar
PubMed
Close
,
P. Cliche Centre d’Applications et de Recherches en Télédétection, Université de Sherbrooke, Sherbrooke, Québec, Canada

Search for other papers by P. Cliche in
Current site
Google Scholar
PubMed
Close
,
L. Brucker Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS/Université Joseph Fourier, Grenoble, France

Search for other papers by L. Brucker in
Current site
Google Scholar
PubMed
Close
,
G. Picard Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS/Université Joseph Fourier, Grenoble, France

Search for other papers by G. Picard in
Current site
Google Scholar
PubMed
Close
,
M. Fily Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS/Université Joseph Fourier, Grenoble, France

Search for other papers by M. Fily in
Current site
Google Scholar
PubMed
Close
,
C. Derksen Climate Research Division, Environment Canada, Toronto, Ontario, Canada

Search for other papers by C. Derksen in
Current site
Google Scholar
PubMed
Close
, and
J. M. Willemet Centre d’Étude de la Neige, Centre National de Recherches Météorologiques, Météo-France, Grenoble, France

Search for other papers by J. M. Willemet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Snow cover plays a key role in the climate system by influencing the transfer of energy and mass between the soil and the atmosphere. In particular, snow water equivalent (SWE) is of primary importance for climatological and hydrological processes and is a good indicator of climate variability and change. Efforts to quantify SWE over land from spaceborne passive microwave measurements have been conducted since the 1980s, but a more suitable method has yet to be developed for hemispheric-scale studies. Tools such as snow thermodynamic models allow for a better understanding of the snow cover and can potentially significantly improve existing snow products at the regional scale.

In this study, the use of three snow models [SNOWPACK, CROCUS, and Snow Thermal Model (SNTHERM)] driven by local and reanalysis meteorological data for the simulation of SWE is investigated temporally through three winter seasons and spatially over intensively sampled sites across northern Québec. Results show that the SWE simulations are in agreement with ground measurements through three complete winter seasons (2004/05, 2005/06, and 2007/08) in southern Québec, with higher error for 2007/08. The correlation coefficients between measured and predicted SWE values ranged between 0.72 and 0.99 for the three models and three seasons evaluated in southern Québec. In subarctic regions, predicted SWE driven with the North American Regional Reanalysis (NARR) data fall within the range of measured regional variability. NARR data allow snow models to be used regionally, and this paper represents a first step for the regionalization of thermodynamic multilayered snow models driven by reanalysis data for improved global SWE evolution retrievals.

Corresponding author address: Alexandre Langlois, Ph.D., Post Doc Fellow, CARTEL, Département de Géomatique Appliquée, Université de Sherbrooke, 2500 Blvd. de l’Université, Sherbrooke, QC J1K 2R1, Canada. Email: a.langlois2@usherbrooke.ca

Abstract

Snow cover plays a key role in the climate system by influencing the transfer of energy and mass between the soil and the atmosphere. In particular, snow water equivalent (SWE) is of primary importance for climatological and hydrological processes and is a good indicator of climate variability and change. Efforts to quantify SWE over land from spaceborne passive microwave measurements have been conducted since the 1980s, but a more suitable method has yet to be developed for hemispheric-scale studies. Tools such as snow thermodynamic models allow for a better understanding of the snow cover and can potentially significantly improve existing snow products at the regional scale.

In this study, the use of three snow models [SNOWPACK, CROCUS, and Snow Thermal Model (SNTHERM)] driven by local and reanalysis meteorological data for the simulation of SWE is investigated temporally through three winter seasons and spatially over intensively sampled sites across northern Québec. Results show that the SWE simulations are in agreement with ground measurements through three complete winter seasons (2004/05, 2005/06, and 2007/08) in southern Québec, with higher error for 2007/08. The correlation coefficients between measured and predicted SWE values ranged between 0.72 and 0.99 for the three models and three seasons evaluated in southern Québec. In subarctic regions, predicted SWE driven with the North American Regional Reanalysis (NARR) data fall within the range of measured regional variability. NARR data allow snow models to be used regionally, and this paper represents a first step for the regionalization of thermodynamic multilayered snow models driven by reanalysis data for improved global SWE evolution retrievals.

Corresponding author address: Alexandre Langlois, Ph.D., Post Doc Fellow, CARTEL, Département de Géomatique Appliquée, Université de Sherbrooke, 2500 Blvd. de l’Université, Sherbrooke, QC J1K 2R1, Canada. Email: a.langlois2@usherbrooke.ca

Save
  • Albert, M. R., Hardy J. P. , and Marsh P. , 1993: An introduction to snow hydrology and its integration with physical, chemical and biological systems. Snow Hydrology: The Integration of Physical Chemical and Biological Systems, J. Hardy, M. R. Albert, and P. Marsh, Eds., John Wiley and Sons, 373 pp.

    • Search Google Scholar
    • Export Citation
  • Bartelt, P. B., and Lehning M. , 2002: A physical SNOWPACK model for avalanche warning. Part I: Numerical model. Cold Reg. Sci. Technol., 35 , 123145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., Masson V. , Meyers T. , and Noilhan J. , 2000: The influence of the inclusion of soil freezing on simulations by a soil–atmosphere–transfer scheme. J. Appl. Meteor., 39 , 15441569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, E., Martin E. , Gendre V. S. C. , and Coleou C. , 1989: An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol., 35 , 333342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brun, E., David P. , Sudul M. , and Brunot G. , 1992: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol., 38 , 1322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., and Karoly D. J. , 2007: A brief evaluation of precipitation from the North American Regional Reanalysis. J. Hydrometeor., 8 , 837847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., and Comiso J. C. , 2000: Algorithm Theoretical Basis Document (ATBD) for the AMSR-E Sea Ice Algorithm. NASA Goddard Space Flight Center, 79 pp.

    • Search Google Scholar
    • Export Citation
  • Chang, A. T. C., Foster J. L. , Hall D. K. , Rango A. , and Hartline B. K. , 1982: Snow water equivalent estimation by microwave radiometry. Cold Reg. Sci. Technol., 5 , 259267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, A. T. C., Foster J. L. , and Hall D. K. , 1987: Nimbus-7 SMMR derived global snow cover parameters. Ann. Glaciol., 9 , 3944.

  • Cherkauer, K. A., and Lettenmaier D. P. , 1999: Hydrological effects of frozen soils in the upper Mississippi River basin. J. Geophys. Res., 104 , 1959919610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., Grenfell T. C. , Bell D. L. , Lange M. A. , and Ackley S. F. , 1989: Passive microwave in situ observations of winter Wedell sea ice. J. Geophys. Res., 94 , 1089110905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dang, H., Genthon C. , and Martin E. , 1997: Numerical modelling of snow cover over polar ice sheets. Ann. Glaciol., 25 , 170176.

  • Derksen, C., Walker A. , and Goodison B. , 2005a: Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada. Remote Sens. Environ., 96 , 315327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derksen, C., Walker A. , Goodison B. , and Strapp J. W. , 2005b: Integrating in situ and multi-scale passive microwave data for estimation of sub-grid scale snow water equivalent distribution and variability. IEEE Trans. Geosci. Remote Sens., 43 , 960972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derksen, C., Sturm M. , Liston G. E. , Holmgren J. , Huntington H. , Silis A. , and Solie D. , 2009: Northwest Territories and Nunavut snow characteristics from a subarctic traverse: Implications for passive microwave remote sensing. J. Hydrometeor., 10 , 448463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, M., Kim E. J. , and Margulis S. A. , 2008: Quantifying uncertainty in modeling snow microwave radiance for a mountain snowpack at the point-scale, including stratigraphic effects. IEEE Trans. Geosci. Remote Sens., 46 , 17531767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essery, R., and Yang Z-L. , 2001: An overview of models participating in the snow model intercomparison project (SnowMIP). Proc. Eighth Scientific Assembly of IAMAS, Innsbruck, Austria, International Association of Meteorology and Atmospheric Sciences.

    • Search Google Scholar
    • Export Citation
  • Etchevers, P., and Coauthors, 2004: Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project). Ann. Glaciol., 38 , 150158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genthon, C., Lardeux P. , and Krinner G. , 2007: The surface accumulation and ablation of a blue ice area near Cap Prudhomme, Adélie Land, Antarctica. J. Glaciol., 183 , 635645.

    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., 1978: Accuracy of Canadian snow gage measurements. J. Appl. Meteor., 17 , 15421548.

  • Goodison, B. E., 1981: Compatibility of Canadian snowfall and snow cover data. Water Resour. Res., 17 , 893900.

  • Guo, J., Tsang L. , Josberger E. G. , Wood A. W. , Hwang J-N. , and Lettenmaier D. P. , 2003: Mapping the spatial distribution and time evolution of snow water equivalent with passive microwave measurements. IEEE Trans. Geosci. Remote Sens., 41 , 612621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafsson, D., Stahli M. , and Jansson P. E. , 2001: The surface energy balance of a snow cover: Comparing measurements to two different simulation models. Theor. Appl. Climatol., 70 , 8196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM.89. U.S. Army Corps of Engineers Special Rep. 91-16, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Kunzi, K. F., Patil S. , and Rott H. , 1982: Snow cover parameters retrieved from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) data. IEEE Trans. Geosci. Remote Sens., 20 , 452467.

    • Search Google Scholar
    • Export Citation
  • Lehning, M., Bartelt P. , Brown B. , and Fierz C. , 2002: A physical SNOWPACK model for the Swiss avalanche warning: Part III: Meteorological forcing, thin layer formulation and evaluation. Cold Reg. Sci. Technol., 35 , 169184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemke, P., and Coauthors, 2007: Observations: Changes in snow, ice and frozen ground. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 337–383.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water energy fluxes for general circulation models. J. Geophys. Res., 99 , 1441514428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., Berbery E. H. , Mitchell K. E. , and Betts A. K. , 2007: Relationships between land surface and near-surface atmospheric variables in the NCEP North American Regional Reanalysis. J. Hydrometeor., 8 , 11841204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Male, D. H., and Granger R. J. , 1981: Snow surface energy exchange. Water Resour. Res., 17 , 609627.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Metcalfe, J. R., and Goodison B. E. , 1993: Correction of Canadian winter precipitation data. Preprints, Eighth Symp. on Meteorological Observations and Instrumentation, Anaheim, CA, Amer. Meteor. Soc., 338–343.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pardé, M., Goïta K. , and Royer A. , 2007: Inversion of a passive microwave snow emission model for water equivalent estimation using airborne and satellite data. Remote Sens. Environ., 111 , 346356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J., Essery R. , and Toth B. , 2004: Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: Observations in a subarctic mountain catchments. Ann. Glaciol., 38 , 195201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulliainen, J., and Hallikainen M. , 2001: Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sens. Environ., 75 , 7685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rango, A., 1980: Operational applications of satellite snow cover observations. Water Resour. Bull., 16 , 10661073.

  • Rutter, N., Cline D. , and Li L. , 2008: Evaluation of the NOHRSC snow model (NSM) in a one-dimensional mode. J. Hydrometeor., 9 , 695711.

  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114 , D06111. doi:10.1029/2008JD011063.

    • Search Google Scholar
    • Export Citation
  • Schultz, G. A., and Barrett E. C. , 1989: Advances in remote sensing for hydrology and water resources management. UNESCO Tech. Documents in Hydrology IHP-III Project 5.1, 102 pp.

    • Search Google Scholar
    • Export Citation
  • Skaugen, T., 2007: Modelling the spatial variability of snow water equivalent at the catchment scale. Hydrol. Earth Syst. Sci., 11 , 15431550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, A. G., Bohn T. J. , McCreight J. L. , Serreze M. C. , and Lettenmaier D. P. , 2006: A multimodel simulation of pan-Arctic hydrology. J. Geophys. Res., 112 , G04S45. doi:10.1029/2006JG000303.

    • Search Google Scholar
    • Export Citation
  • Spreitzhofer, G., Fierz C. , and Lehning M. , 2004: SN_GUI: A graphical user interface for snowpack modeling. Comput. Geosci., 30 , 809816.

  • Szeto, K. K., Tran H. , MacKay M. , Crawford R. , and Stewart E. , 2008: Assessing water and energy budgets for the Mackenzie River Basin. Atmospheric Dynamics, M.-K. Woo, Ed., Vol. 1, Cold Region Atmospheric and Hydrologic Studies: The Mackenzie GEWEX Experience, Springer Berlin Heidelberg, 269–296.

    • Search Google Scholar
    • Export Citation
  • Tait, A. B., 1998: Estimation of snow water equivalent using passive microwave radiation data. Remote Sens. Environ., 64 , 286291.

  • Walker, A., and Goodison B. , 1993: Discrimination of a wet snowcover using passive microwave satellite data. Ann. Glaciol., 17 , 307311.

  • Walker, A., and Silis A. , 2002: Snow-cover variations over the Mackenzie River basin, Canada, derived from SSM/I passive-microwave satellite data. Ann. Glaciol., 34 , 814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and Coauthors, 1999: Quantification of precipitation measurement discontinuity induced by wind shields on national gauges. Water Resour. Res., 35 , 491508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., 2005: Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys., 43 , RG4002. doi:10.1029/2004RG000157.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 941 199 76
PDF Downloads 590 81 4