A Multiscale Ensemble Filtering System for Hydrologic Data Assimilation. Part II: Application to Land Surface Modeling with Satellite Rainfall Forcing

Ming Pan Princeton University, Princeton, New Jersey

Search for other papers by Ming Pan in
Current site
Google Scholar
PubMed
Close
and
Eric F. Wood Princeton University, Princeton, New Jersey

Search for other papers by Eric F. Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Part I of this series of studies developed procedures to implement the multiscale filtering algorithm for land surface hydrology and performed assimilation experiments with rainfall ensembles from a climate model. However, a most important application of the multiscale technique is to assimilate satellite-based remote sensing observations into a land surface model—and this has not been realized. This paper focuses on enabling the multiscale assimilation system to use remotely sensed precipitation data. The major challenge is the generation of a rainfall ensemble given one satellite rainfall map. An acceptable rainfall ensemble must contain a proper multiscale spatial correlation structure, and each ensemble member presents a realistic rainfall process in both space and time. A pattern-based sampling approach is proposed, in which random samples are drawn from a historical rainfall database according to the pattern of the satellite rainfall and then a cumulative distribution function matching procedure is applied to ensure the proper statistics for the pixel-level rainfall intensity. The assimilation system is applied using Tropical Rainfall Measuring Mission real-time satellite rainfall over the Red–Arkansas River basin. Results show that the ensembles so generated satisfy the requirements for spatial correlation and realism and the multiscale assimilation works reasonably well. A number of limitations also exist in applying this generation method, mainly stemming from the high dimensionality of the problem and the lack of historical records.

Corresponding author address: Ming Pan, Dept. of Civil and Environmental Engineering, Princeton University, EQuad, Olden St., Princeton, NJ 08544. Email: mpan@princeton.edu

Abstract

Part I of this series of studies developed procedures to implement the multiscale filtering algorithm for land surface hydrology and performed assimilation experiments with rainfall ensembles from a climate model. However, a most important application of the multiscale technique is to assimilate satellite-based remote sensing observations into a land surface model—and this has not been realized. This paper focuses on enabling the multiscale assimilation system to use remotely sensed precipitation data. The major challenge is the generation of a rainfall ensemble given one satellite rainfall map. An acceptable rainfall ensemble must contain a proper multiscale spatial correlation structure, and each ensemble member presents a realistic rainfall process in both space and time. A pattern-based sampling approach is proposed, in which random samples are drawn from a historical rainfall database according to the pattern of the satellite rainfall and then a cumulative distribution function matching procedure is applied to ensure the proper statistics for the pixel-level rainfall intensity. The assimilation system is applied using Tropical Rainfall Measuring Mission real-time satellite rainfall over the Red–Arkansas River basin. Results show that the ensembles so generated satisfy the requirements for spatial correlation and realism and the multiscale assimilation works reasonably well. A number of limitations also exist in applying this generation method, mainly stemming from the high dimensionality of the problem and the lack of historical records.

Corresponding author address: Ming Pan, Dept. of Civil and Environmental Engineering, Princeton University, EQuad, Olden St., Princeton, NJ 08544. Email: mpan@princeton.edu

Save
  • Bindlish, R., Jackson T. J. , Wood E. , Gao H. , Starks P. , Bosch D. , and Lakshmi V. , 2003: Soil moisture estimates from TRMM Microwave Imager observations over the Southern United States. Remote Sens. Environ., 85 , 507515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chatdarong, V., 2006: Multi-sensor rainfall data assimilation using ensemble approaches. Ph.D. thesis, Massachusetts Institute of Technology, 203 pp.

  • Clark, M., Gangopadhyay S. , Hay L. , Rajagopalan B. , and Wilby R. , 2004: The Schaake Shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeor., 5 , 243262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, B., 2007: Forcing files for NLDAS Phase 2 (NLDAS-2), version 1.0. NASA Rep., 7 pp. [Available online at http://ldas.gsfc.nasa.gov/LDAS8th/LDASdocs/nldas2forcing.pdf].

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108 , 8842. doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and Wood E. F. , 2003: The assimilation of remotely sensed soil brightness temperature imagery into a land-surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour., 26 , 137149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frakt, A. B., and Willsky A. S. , 2001: Computational efficient stochastic realization for internal autoregressive models. Multidimens. Syst. Signal Process., 12 , 109142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, H., Wood E. F. , Jackson T. J. , Drusch M. , and Bindlish R. , 2006: Using TRMM/TMI to retrieve surface soil moisture over the southern United States from 1998 to 2002. J. Hydrometeor., 7 , 2338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, P. R., and Entin J. , 2006: The NASA Energy- and Water-Cycle Study (NEWS). Geophysical Research Abstracts, Vol. 8, Abstract 08456. [Available online at http://www.cosis.net/abstracts/EGU06/08456/EGU06-J-08456.pdf].

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 , 1441514428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., Wood E. F. , and Lettenmaier D. P. , 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modifications. Global Planet. Change, 13 , 195206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, L., and Wood E. F. , 2008: Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the eastern United States. J. Hydrometeor., 9 , 866884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., Wood E. F. , and Troch P. A. , 2006: The terrestrial water cycle: Modeling and data assimilation across catchment scales. J Hydrometeor., 7 , 309311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinetz, T. M., Berkovich S. G. , and Schulten K. J. , 1993: Neural-gas network for vector quantization and its application to time-series prediction. IEEE Trans. Neural Network, 4 , 558569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., Wood E. F. , Wójcik R. , Pan M. , Sheffield J. , Gao H. , and Su H. , 2008: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies. Remote Sens. Environ., 112 , 430444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 , D07S90. doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Pan, M., Wood E. F. , Wójcik R. , and McCabe M. F. , 2008: Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sens. Environ., 112 , 12821294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., Wood E. F. , McLaughlin D. B. , Entekhabi D. , and Luo L. , 2009: A multiscale ensemble filtering system for hydrologic data assimilation. Part I: Implementation and synthetic experiment. J. Hydrometeor., 10 , 794806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and Koster R. D. , 2005: Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model. Geophys. Res. Lett., 32 , L02404. doi:10.1029/2004GL021700.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Crow W. T. , Koster R. D. , Sharif H. O. , and Mahanama S. P. P. , 2008: Contribution of soil moisture retrievals to land data assimilation products. Geophys. Res. Lett., 35 , L01404. doi:10.1029/2007GL031986.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19 , 34833517.

  • Schaake, J. C., 1994: Science strategy of the GEWEX Continental-Scale International Project (GCIP). Adv. Water Resour., 17 , 117127.

  • Sheffield, J., Goteti G. , and Wood E. F. , 2006: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19 , 30883111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., Uppala S. M. , Dee D. , and Kobayashi S. , 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., and Wood E. F. , 1987: A multidimensional model of nonstationary space–time rainfall at the catchment scale. Water Resour. Res., 23 , 12891299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf].

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and Clark M. P. , 2006: Snow data assimilation via an ensemble Kalman filter. J. Hydrometeor., 7 , 478493.

  • Troy, T. J., Wood E. F. , and Sheffield J. , 2008: An efficient calibration method for continental-scale land surface modeling. Water Resour. Res., 44 , W09411. doi:10.1029/2007WR006513.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Krajewski W. F. , Ciach G. J. , and Zimmerman D. L. , 2009: Product-error-driven generator of probable rainfall conditioned on WSR-88D precipitation estimates. Water Resour. Res., 45 , W01404. doi:10.1029/2008WR006946.

    • Search Google Scholar
    • Export Citation
  • Willsky, A. S., 2002: Multiresolution Markov models for signal and image processing. Proc. IEEE, 90 , 13961458.

  • Wójcik, R., McLaughlin D. , Konings A. G. , and Entekhabi D. , 2008: Conditioning stochastic rainfall replicates on remote sensing data. IEEE Trans. Geosci. Remote Sens., 47 , 24362449.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., 2006: Multisensor large scale land surface data assimilation using ensemble approaches. Ph.D. thesis, Massachusetts Institute of Technology, 234 pp.

  • Zhou, Y., McLaughlin D. , Entekhabi D. , and Ng G. C. , 2008: An ensemble multiscale filter for large nonlinear data assimilation problems. Mon. Wea. Rev., 136 , 678698.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 146 48 3
PDF Downloads 101 47 3