• Adegoke, J. O., , Pielke R. A. , , Eastman J. , , Mahmood R. , , and Hubbard K. G. , 2003: Impact of irrigation on midsummer surface fluxes and temperatures under dry synoptic conditions: A regional atmospheric model study of the U.S. high plains. Mon. Wea. Rev., 131 , 556564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M., , and Mitchell K. E. , 1997: The NCEP hourly multisensor U.S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 54–55.

    • Search Google Scholar
    • Export Citation
  • Ben-Gai, T., , Bitan A. , , Manes M. , , and Alpert P. , 2001: Climatic variations in the moisture and instability patterns of the atmospheric boundary layer on the East Mediterranean coastal plain of Israel. Bound-Layer Meteor., 100 , 363371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A., , Chen F. , , Mitchell K. , , and Janjic Z. , 1997: Assessment of the land surface and boundary layer models in two operational versions of the NCEP Eta model using FIFE data. Mon. Wea. Rev., 125 , 28962916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1997: Effects of Land Use on the Climate of the United States. Climatic Change, 37 , 449486.

  • Bonan, G. B., 2001: Observational evidence for reduction of daily maximum temperature by croplands in the Midwest United States. J. Climate, 14 , 24302442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., , Levis S. , , Sitch M. , , Vertenstein M. , , and Oleson K. W. , 2003: A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Global Change Biol., 9 , 15431566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, T. N., , Pielke R. A. Sr., , Kittel T. G. F. , , Nemani R. , , and Running S. W. , 2000: Simulated impacts of historical land cover changes on global climate in northern winter. Climate Dyn., 16 , 93105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., , and Avissar R. , 1994: The impact of land-surface wetness heterogeneity on mesoscale heat fluxes. J. Appl. Meteor., 33 , 13231340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101 , (D3). 72517268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108 , 8842. doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., , Polcher J. , , Laval K. , , and Sabre M. , 2003: Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula. Geophys. Res. Lett., 30 , 1986. doi:10.1029/2003GL018024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., , and Henderson-Sellers A. , 1988: Modelling tropical deforestation: A study of GCM land-surface parameterizations. Quart. J. Roy. Meteor. Soc., 114 , 439462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13 , 29002922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., , Mitchell K. E. , , Lin Y. , , Rogers E. , , Grunmann P. , , Koren V. , , Gayno G. , , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Gesch, D. B., , Verdin K. L. , , and Greenlee S. K. , 1999: New land surface digital elevation model covers the Earth. Eos, Trans. Amer. Geophys. Union, 80 , 6970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddeland, I., , Lettenmaier D. P. , , and Skaugen T. , 2006: Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J. Hydrol., 324 , 210223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., , DeFries R. S. , , Townshend J. R. G. , , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21 , 1331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , Shi W. , , Yarosh E. , , and Joyce R. , 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7, Climate Prediction Center, Camp Springs, MD, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Hutson, S. S., , Barber N. L. , , Kenny J. F. , , Linsey K. S. , , Lumia D. S. , , and Maupin M. A. , 2004: Estimated use of water in the United States in 2000. U.S. Geological Survey Circular 1268, USGS, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Kanamaru, H., , and Kanamitsu M. , 2008: Model diagnosis of nighttime minimum temperature warming during summer due to irrigation in the California Central Valley. J. Hydrometeor., 9 , 10611072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, V., , Schaake J. , , Mitchell K. , , Duan Q-Y. , , Chen F. , , and Baker J. M. , 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104 , 1956919585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140. doi:10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., , Snyder M. A. , , and Sloan L. C. , 2007: Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett., 34 , L03703. doi:10.1029/2006GL028679.

    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., and Coauthors, 2008: Seasonal temperature responses to land-use change in the western United States. Global Planet. Change, 60 , 250264. doi:10.1016/j.gloplacha.2007.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Model. Software, 21 , 14021415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leff, B., , Ramankutty N. , , and Foley J. A. , 2004: Geographic distribution of major crops across the world. Global Biogeochem. Cycles, 18 , GB1009. doi:10.1029/2003GB002108.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., , and Bonfils C. , 2008: The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934–2002. J. Climate, 21 , 20632071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., , Bala G. , , and Duffy P. B. , 2006: Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett., 33 , L06708. doi:10.1029/2005GL025492.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., , Bonfils C. , , and Faurès J. M. , 2008: The role of irrigation expansion in past and future temperature trends. Earth Interactions, 12 .[Available online at http://EarthInteractions.org].

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., , and Hubbard K. G. , 2002: Anthropogenic land-use change in the North American tall grass-short grass transition and modification of near-surface hydrologic cycle. Climate Res., 21 , 8390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 , D07S90. doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Moore, N., , and Rojstaczer S. , 2002: Irrigation’s influence on precipitation: Texas High Plains, U.S.A. Geophys. Res. Lett., 29 , 1755. doi:10.1029/2002GL014940.

    • Search Google Scholar
    • Export Citation
  • NOAA, cited. 2005: “Technical procedures bulletin” for the T382 Global Forecast System. [Available online at http://www.emc.ncep.noaa.gov/gc_wmb/Documentation/TPBoct05/T382.TPB.FINAL.htm].

    • Search Google Scholar
    • Export Citation
  • Otterman, J., , Manes A. , , Rubin S. , , Alpert P. , , and O’C Starr D. , 1990: An increase of early rains in southern Israel following land-use change? Bound.-Layer Meteor., 53 , 333351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozdogan, M., , and Gutman G. , 2008: A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US. Remote Sens. Environ., 112 , 35203537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozdogan, M., , Salvucci G. D. , , and Anderson B. C. , 2006: Examination of the Bouchet–Morton complementary relationship using a mesoscale climate model and observations under a progressive irrigation scenario. J. Hydrometeor., 7 , 235251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., , and Zeng X. , 1989: Influence of severe storm development of irrigated land. Natl. Wea. Dig., 14 , 1617.

  • Pinker, R. T., and Coauthors, 2003: Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108 , 8844. doi:10.1029/2002JD003301.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., , Jackson T. J. , , and Rawls W. J. , 2000: Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil Map of the World with global pedon databases and continuous pedotransfer functions. Water Resour. Res., 36 , 36533662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Rogers, E., , Black T. L. , , Deaven D. G. , , DiMego G. J. , , Zhao Q. , , Baldwin M. , , Junker N. W. , , and Lin Y. , 1996: Changes to the operational “early” eta analysis/forecast system at the National Centers for Environmental Prediction. Wea. Forecasting, 11 , 391413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., , Pan Z. , , Turner R. W. , , and Takle E. S. , 1998: On the potential impact of irrigated areas in North American summer rainfall caused by large-scale systems. J. Appl. Meteor., 37 , 325331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9 , 676705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, S., , Döll P. , , Feick S. , , Hoogeveen J. , , and Frenken K. , 2007: Global map of irrigated areas version 4.0.1. University of Frankfurt (Main), Germany/Food and Agriculture Organization of the United Nations, Rome, Italy. [Available online at http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm].

    • Search Google Scholar
    • Export Citation
  • Tang, Q., , Oki T. , , Kanae S. , , and Hu H. , 2007: The influence of precipitation variability and partial irrigation within grid cells on a hydrological simulation. J. Hydrometeor., 8 , 499512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thenkabail, P. S., and Coauthors, 2008: A global irrigated area map (GIAM) using remote sensing at the end of the last millennium. International Water Management Institute Rep., 63 pp.

    • Search Google Scholar
    • Export Citation
  • USDA, 2004: Census of agriculture 2002: Farm and ranch irrigation survey (2003), Vol. 3, Special Studies, Part 1, USDA Tech. Rep., NTIS AC-02-SS-1, 216 pp.

  • Vaughan, P. J., , Trout T. J. , , and Ayars J. E. , 2007: A processing method for weighing lysimeter data and comparison to micrometeorological ETo predictions. Agric. Water Manage., 88 , 141146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weare, B. C., , and Du H. , 2008: Modelling regional climate changes: Influences of recent global warming and irrigation in California. Int. J. Climatol., 28 , 12011212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, T. C., , Wetherald R. T. , , and Manabe S. , 1984: Effect of soil moisture on the short-term climate and hydrology change: A numerical experiment. Mon. Wea. Rev., 112 , 474490.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 201 201 22
PDF Downloads 158 158 15

Simulating the Effects of Irrigation over the United States in a Land Surface Model Based on Satellite-Derived Agricultural Data

View More View Less
  • 1 Center for Sustainability and the Global Environment (SAGE), University of Wisconsin—Madison, Madison, Wisconsin
  • | 2 Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 4 Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

A novel method is introduced for integrating satellite-derived irrigation data and high-resolution crop-type information into a land surface model (LSM). The objective is to improve the simulation of land surface states and fluxes through better representation of agricultural land use. Ultimately, this scheme could enable numerical weather prediction (NWP) models to capture land–atmosphere feedbacks in managed lands more accurately and thus improve forecast skill. Here, it is shown that the application of the new irrigation scheme over the continental United States significantly influences the surface water and energy balances by modulating the partitioning of water between the surface and the atmosphere. In this experiment, irrigation caused a 12% increase in evapotranspiration (QLE) and an equivalent reduction in the sensible heat flux (QH) averaged over all irrigated areas in the continental United States during the 2003 growing season. Local effects were more extreme: irrigation shifted more than 100 W m−2 from QH to QLE in many locations in California, eastern Idaho, southern Washington, and southern Colorado during peak crop growth. In these cases, the changes in ground heat flux (QG), net radiation (RNET), evapotranspiration (ET), runoff (R), and soil moisture (SM) were more than 3 W m−2, 20 W m−2, 5 mm day−1, 0.3 mm day−1, and 100 mm, respectively. These results are highly relevant to continental-to-global-scale water and energy cycle studies that, to date, have struggled to quantify the effects of agricultural management practices such as irrigation. On the basis of the results presented here, it is expected that better representation of managed lands will lead to improved weather and climate forecasting skill when the new irrigation scheme is incorporated into NWP models such as NOAA’s Global Forecast System (GFS).

Corresponding author address: Mutlu Ozdogan, SAGE, University of Wisconsin—Madison, 1710 University Avenue, Madison, WI 53706. Email: ozdogan@wisc.edu

Abstract

A novel method is introduced for integrating satellite-derived irrigation data and high-resolution crop-type information into a land surface model (LSM). The objective is to improve the simulation of land surface states and fluxes through better representation of agricultural land use. Ultimately, this scheme could enable numerical weather prediction (NWP) models to capture land–atmosphere feedbacks in managed lands more accurately and thus improve forecast skill. Here, it is shown that the application of the new irrigation scheme over the continental United States significantly influences the surface water and energy balances by modulating the partitioning of water between the surface and the atmosphere. In this experiment, irrigation caused a 12% increase in evapotranspiration (QLE) and an equivalent reduction in the sensible heat flux (QH) averaged over all irrigated areas in the continental United States during the 2003 growing season. Local effects were more extreme: irrigation shifted more than 100 W m−2 from QH to QLE in many locations in California, eastern Idaho, southern Washington, and southern Colorado during peak crop growth. In these cases, the changes in ground heat flux (QG), net radiation (RNET), evapotranspiration (ET), runoff (R), and soil moisture (SM) were more than 3 W m−2, 20 W m−2, 5 mm day−1, 0.3 mm day−1, and 100 mm, respectively. These results are highly relevant to continental-to-global-scale water and energy cycle studies that, to date, have struggled to quantify the effects of agricultural management practices such as irrigation. On the basis of the results presented here, it is expected that better representation of managed lands will lead to improved weather and climate forecasting skill when the new irrigation scheme is incorporated into NWP models such as NOAA’s Global Forecast System (GFS).

Corresponding author address: Mutlu Ozdogan, SAGE, University of Wisconsin—Madison, 1710 University Avenue, Madison, WI 53706. Email: ozdogan@wisc.edu

Save