Application of the Priestley–Taylor Approach in a Two-Source Surface Energy Balance Model

Nurit Agam Hydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland

Search for other papers by Nurit Agam in
Current site
Google Scholar
PubMed
Close
,
William P. Kustas Hydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland

Search for other papers by William P. Kustas in
Current site
Google Scholar
PubMed
Close
,
Martha C. Anderson Hydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland

Search for other papers by Martha C. Anderson in
Current site
Google Scholar
PubMed
Close
,
John M. Norman Department of Soil Science, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by John M. Norman in
Current site
Google Scholar
PubMed
Close
,
Paul D. Colaizzi Conservation and Production Research Laboratory, Agricultural Research Service, USDA, Bushland, Texas

Search for other papers by Paul D. Colaizzi in
Current site
Google Scholar
PubMed
Close
,
Terry A. Howell Conservation and Production Research Laboratory, Agricultural Research Service, USDA, Bushland, Texas

Search for other papers by Terry A. Howell in
Current site
Google Scholar
PubMed
Close
,
John H. Prueger National Soil Tilth Laboratory, Agricultural Research Service, USDA, Ames, Iowa

Search for other papers by John H. Prueger in
Current site
Google Scholar
PubMed
Close
,
Tilden P. Meyers NOAA/Atmospheric Turbulence and Diffusion Division, Oak Ridge, Tennessee

Search for other papers by Tilden P. Meyers in
Current site
Google Scholar
PubMed
Close
, and
Tim B. Wilson NOAA/Atmospheric Turbulence and Diffusion Division, Oak Ridge, Tennessee

Search for other papers by Tim B. Wilson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Priestley–Taylor (PT) approximation for computing evapotranspiration was initially developed for conditions of a horizontally uniform saturated surface sufficiently extended to obviate any significant advection of energy. Nevertheless, the PT approach has been effectively implemented within the framework of a thermal-based two-source model (TSM) of the surface energy balance, yielding reasonable latent heat flux estimates over a range in vegetative cover and climate conditions. In the TSM, however, the PT approach is applied only to the canopy component of the latent heat flux, which may behave more conservatively than the bulk (soil + canopy) system. The objective of this research is to investigate the response of the canopy and bulk PT parameters to varying leaf area index (LAI) and vapor pressure deficit (VPD) in both natural and agricultural vegetated systems, to better understand the utility and limitations of this approximation within the context of the TSM. Micrometeorological flux measurements collected at multiple sites under a wide range of atmospheric conditions were used to implement an optimization scheme, assessing the value of the PT parameter for best performance of the TSM. Overall, the findings suggest that within the context of the TSM, the optimal canopy PT coefficient for agricultural crops appears to have a fairly conservative value of ∼1.2 except when under very high vapor pressure deficit (VPD) conditions, when its value increases. For natural vegetation (primarily grasslands), the optimal canopy PT coefficient assumed lower values on average (∼0.9) and dropped even further at high values of VPD. This analysis provides some insight as to why the PT approach, initially developed for regional estimates of potential evapotranspiration, can be used successfully in the TSM scheme to yield reliable heat flux estimates over a variety of land cover types.

* Current affiliation: Gilat Research Center, Agricultural Research Organization of Israel, D. N. Negev, Israel.

Corresponding author address: Nurit Agam, Gilat Research Center, Agricultural Research Organization of Israel, D. N. Negev 85280, Israel. Email: nurit.agam@gmail.com

Abstract

The Priestley–Taylor (PT) approximation for computing evapotranspiration was initially developed for conditions of a horizontally uniform saturated surface sufficiently extended to obviate any significant advection of energy. Nevertheless, the PT approach has been effectively implemented within the framework of a thermal-based two-source model (TSM) of the surface energy balance, yielding reasonable latent heat flux estimates over a range in vegetative cover and climate conditions. In the TSM, however, the PT approach is applied only to the canopy component of the latent heat flux, which may behave more conservatively than the bulk (soil + canopy) system. The objective of this research is to investigate the response of the canopy and bulk PT parameters to varying leaf area index (LAI) and vapor pressure deficit (VPD) in both natural and agricultural vegetated systems, to better understand the utility and limitations of this approximation within the context of the TSM. Micrometeorological flux measurements collected at multiple sites under a wide range of atmospheric conditions were used to implement an optimization scheme, assessing the value of the PT parameter for best performance of the TSM. Overall, the findings suggest that within the context of the TSM, the optimal canopy PT coefficient for agricultural crops appears to have a fairly conservative value of ∼1.2 except when under very high vapor pressure deficit (VPD) conditions, when its value increases. For natural vegetation (primarily grasslands), the optimal canopy PT coefficient assumed lower values on average (∼0.9) and dropped even further at high values of VPD. This analysis provides some insight as to why the PT approach, initially developed for regional estimates of potential evapotranspiration, can be used successfully in the TSM scheme to yield reliable heat flux estimates over a variety of land cover types.

* Current affiliation: Gilat Research Center, Agricultural Research Organization of Israel, D. N. Negev, Israel.

Corresponding author address: Nurit Agam, Gilat Research Center, Agricultural Research Organization of Israel, D. N. Negev 85280, Israel. Email: nurit.agam@gmail.com

Save
  • Anderson, M. C., Norman J. M. , Kustas W. P. , Li F. , Prueger J. H. , and Mecikalski J. M. , 2005: Effects of vegetation clumping on two-source model estimates of surface energy fluxes from an agricultural landscape during SMACEX. J. Hydrometeor., 6 , 892909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Mecikalski J. R. , Otkin J. A. , and Kustas W. P. , 2007a: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys.Res., 112 , D10117. doi:10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Mecikalski J. R. , Otkin J. A. , and Kustas W. P. , 2007b: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res., 112 , D1112. doi:10.1029/2006JD007507.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., 1994: A comparative study of mass and energy exchange over a closed C3 (wheat) and an open C4 (corn) canopy: I. The partitioning of available energy into latent and sensible heat exchange. Agric. For. Meteor., 67 , 191220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Xu L. , 2007: What limits evaporation from Mediterranean oak woodlands - The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere? Adv. Water Resour., 30 , 21132122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., Vogel C. A. , and Hall B. , 1997: Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. J. Geophys. Res., 102 , 2893928951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevington, P. R., 1969: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, 336 pp.

  • Black, T. A., 1979: Evapotranspiration from Douglas fir stands exposed to soil water deficits. Water Resour. Res., 15 , 164170.

  • Campbell, G. S., and Norman J. M. , 1998: An Introduction to Environmental Biophysics. Springer-Verlag, 312 pp.

  • Canfield, R. H., 1941: Application of the line interception method in sampling range vegetation. J. For., 39 , 388394.

  • Castellvi, F., Stockle C. O. , Perez P. J. , and Ibanez M. , 2001: Comparison of methods for applying the Priestley-Taylor equation at a regional scale. Hydrol. Processes, 15 , 16091620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., Ahmed N. U. , Idso S. B. , Reginato R. J. , and Daughtry C. S. T. , 1994: Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens. Environ., 50 , 117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Bruin, H. A. R., 1983: A model for the Priestley-Taylor parameter α. J. Climate Appl. Meteor., 22 , 572578.

  • Diaz-Espejo, A., Verhoef A. , and Knight R. , 2005: Illustration of micro-scale advection using grid-pattern mini-lysimeters. Agric. For. Meteor., 129 , 3952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flint, A. L., and Childs S. W. , 1991: Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut. Agric. For. Meteor., 56 , 247260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • François, C., 2002: The potential of directional radiometric temperatures for monitoring soil and leaf temperature and soil moisture status. Remote Sens. Environ., 80 , 122133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A. N., Schmugge T. J. , Kustas W. P. , Brubaker K. L. , and Prueger J. H. , 2003: Surface energy fluxes over El Reno, Oklahoma, using high-resolution remotely sensed data. Water Resour. Res., 39 , 1164. doi:10.1029/2002WR001734.

    • Search Google Scholar
    • Export Citation
  • French, A. N., and Coauthors, 2005: Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sens. Environ., 99 , 5565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galmes, J., Medrano H. , and Flexas J. , 2007: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol., 175 , 8193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillel, D., 1971: Soil and Water: Physical Principles and Processes. Academic Press, 288 pp.

  • Howell, T. A., Schneider A. D. , Dusek D. A. , Marek T. H. , and Steiner J. L. , 1995a: Calibration and scale performance of Bushland weighing lysimeters. Trans. ASAE, 38 , 10191024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, T. A., Steiner J. L. , Schneider A. D. , and Evett S. R. , 1995b: Evapotranspiration of Irrigated Winter Wheat—Southern High Plains. Trans. ASAE, 38 , 745759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, T. A., Steiner J. L. , Schneider A. D. , Evett S. R. , and Tolk J. A. , 1997: Seasonal and Maximum Daily Evapotranspiration of Irrigated Winter Wheat, Sorghum, and Corn —Southern High Plains. Trans. ASAE, 40 , 623634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, W. A., and Tanner C. B. , 1975: Advection modification of the Priestley and Taylor evapotranspiration formula. Agron. J., 67 , 840842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jury, W. A., and Tanner C. B. , 1976: Estimating evaporation and transpiration from a row crop during incomplete cover. Agron. J., 68 , 239243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalma, J. D., McVicar T. R. , and McCabe M. F. , 2008: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys., 29 , 421469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., 1990: Estimates of evapotranspiration with a one- and two-layer model of heat transfer over partial canopy cover. J. Appl. Meteor., 29 , 704715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Goodrich D. C. , 1994: Preface. Water Resour. Res., 30 , 12111225.

  • Kustas, W. P., and Norman J. M. , 1997: A two-source approach for estimating turbulent fluxes using multiple angle thermal infrared observations. Water Resour. Res., 33 , 14951508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Norman J. M. , 1999: Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric. For. Meteor., 94 , 1329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Norman J. M. , 2000a: A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces. Agron. J., 92 , 847854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Norman J. M. , 2000b: Evaluating the effects of subpixel heterogeneity on pixel average fluxes. Remote Sens. Environ., 74 , 327342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Anderson M. C. , 2009: Advances in thermal infrared remote sensing for land surface modeling. Agric. For. Meteor., 149 , 20712081. doi:10.1016/j.agrformet.2009.05.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., Choudhury B. J. , Moran M. S. , Reginato R. D. , Jackson R. D. , Gay L. W. , and Weaver H. L. , 1989: Determination of sensible heat flux over sparse canopy using thermal infrared data. Agric. For. Meteor., 44 , 197216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., Stannard D. I. , and Allwine K. J. , 1996: Variability in surface energy flux partitioning during Washita ‘92: Resulting effects on Penman-Monteith and Priestley-Taylor parameters. Agric. For. Meteor., 82 , 171193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., Norman J. M. , Schmugge T. J. , and Anderson M. C. , 2004: Mapping surface energy fluxes with radiometric temperature. Thermal Remote Sensing in Land Surface Processes, D. A. Quattrochi and J. C. Luvall, Eds., CRC Press, 205–253.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., Hatfield J. , and Prueger J. H. , 2005: The Soil Moisture–Atmosphere Coupling Experiment (SMACEX): Background, hydrometeorological conditions, and preliminary findings. J. Hydrometeor., 6 , 791804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., Anderson M. C. , Norman J. M. , and Li F. , 2007: Utility of radiometric aerodynamic temperature relations for heat flux estimation. Bound.-Layer Meteor., 122 , 167187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., Kustas W. P. , Prueger J. H. , Neale C. M. U. , and Jackson T. J. , 2005: Utility of remote sensing–based two-source energy balance model under low- and high-vegetation cover conditions. J. Hydrometeor., 6 , 878891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., Kustas W. P. , Anderson M. C. , Jackson T. J. , Bindlish R. , and Prueger J. H. , 2006: Comparing the utility of microwave and thermal remote-sensing constraints in two-source energy balance modeling over an agricultural landscape. Remote Sens. Environ., 101 , 315328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., Kustas W. P. , Anderson M. C. , Prueger J. H. , and Scott R. L. , 2008: Effect of remote sensing spatial resolution on interpreting tower-based flux observations. Remote Sens. Environ., 112 , 337349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Yu Q. , 2007: Quantifying the effects of advection on canopy energy budgets and water use efficiency in an irrigated wheat field in the North China Plain. Agric. Water Manage., 89 , 116122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1981: Evaporation and surface temperature. Quart. J. Roy. Meteor. Soc., 107 , 127.

  • Morgan, C. L. S., Norman J. M. , and Lowery B. , 2003: Estimating plant-available water across a field with an inverse yield model. Soil Sci. Soc. Amer. J., 67 , 620629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norman, J. M., and Campbell G. , 1983: Application of a plant-environment model to problems in irrigation. Advances in Irrigation, D. Hillel, Ed., Academic Press, 156–188.

    • Search Google Scholar
    • Export Citation
  • Norman, J. M., and Arkebauer T. J. , 1991: Predicting canopy light-use efficiency from leaf characteristics. Modeling Plant and Soil Systems, J. T. Ritchie and R. J. Hanks, Eds., ASA Society, 125–143.

    • Search Google Scholar
    • Export Citation
  • Norman, J. M., Kustas W. P. , and Humes K. S. , 1995: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteor., 77 , 263293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norman, J. M., Kustas W. P. , Prueger J. H. , and Diak G. R. , 2000: Surface flux estimation using radiometric temperature: A dual temperature difference method to minimize measurement error. Water Resour. Res., 36 , 22632274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otterman, J., Brakke T. W. , and Susskind J. , 1992: A model for inferring canopy and underlying soil temperatures from multi-directional measurements. Bound.-Layer Meteor., 61 , 8197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penman, H., 1948: Natural evaporation from open water, bare soil, and grass. Proc. Roy. Soc. London, A193 , 120146.

  • Pereira, A. R., 2004: The Priestley–Taylor parameter and the decoupling factor for estimating reference evapotranspiration. Agric. For. Meteor., 125 , 305313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pereira, A. R., Green S. R. , and Villa Nova N. A. , 2007: Sap flow, leaf area, net radiation and the Priestley-Taylor formula for irrigated orchards and isolated trees. Agric. Water Manage., 92 , 4852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100 , 8192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 2000: Equilibrium evaporation and the convective boundary layer. Bound.-Layer Meteor., 96 , 107141.

  • Ritchie, J. T., 1972: Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res., 8 , 12041213.

  • Sanchez, J. M., Kustas W. P. , Caselles V. , and Anderson M. C. , 2008: Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations. Remote Sens. Environ., 112 , 11301143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauer, T. J., Singer J. W. , Prueger J. H. , DeSutter T. M. , and Hatfield J. L. , 2007: Radiation balance and evaporation partitioning in a narrow-row soybean canopy. Agric. For. Meteor., 145 , 206214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., and Wallace J. S. , 1985: Evaporation from sparse crops - An energy combination theory. Quart. J. Roy. Meteor. Soc., 111 , 839855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., and Gurney R. J. , 1990: The theoretical relationship between foliage temperature and canopy resistance in sparse crops. Quart. J. Roy. Meteor. Soc., 116 , 497519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, B., and Taillefer R. , 1986: The effect of synoptic-scale advection on the performance of the Priestley-Taylor evaporation formula. Bound.-Layer Meteor., 36 , 267282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slatyer, R. O., and McIlroy I. C. , 1961: Practical microclimatology with special reference to the water factor in soil–plant–atmosphere relationships. CSIRO and UNESCO, 338 pp.

    • Search Google Scholar
    • Export Citation
  • Stannard, D. I., 1993: Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland. Water Resour. Res., 29 , 13791392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stannard, D. I., Blanford J. H. , Kustas W. P. , Nichols W. D. , Amer S. A. , Schmugge T. J. , and Weltz M. A. , 1994: Interpretation of surface flux measurements in heterogeneous terrain during the MONSOON ’90 experiment. Water Resour. Res., 30 , 12271239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanner, C. B., and Jury W. A. , 1976: Estimating evaporation and transpiration from a row crop during incomplete cover. Agron. J., 68 , 239242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolk, J. A., Howell T. A. , and Evett S. R. , 2006: Nighttime evapotranspiration from alfalfa and cotton in a semiarid climate. Agron. J., 98 , 730736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103 , 279300.

  • Weltz, M. A., Ritchie J. C. , and Fox H. D. , 1994: Comparison of laser and field measurements of vegetation height and canopy cover. Water Resour. Res., 30 , 13111320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and Matsuura K. , 2005: Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Climate Res., 30 , 7982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K. B., and Meyers T. P. , 2001: The spatial variability of energy and carbon dioxide fluxes at the floor of a deciduous forest. Bound.-Layer Meteor., 98 , 443473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, T. B., and Meyers T. P. , 2007: Determining vegetation indices from solar and photosynthetically active radiation fluxes. Agric. For. Meteor., 144 , 160179.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2042 882 78
PDF Downloads 1003 173 15