• Baldwin, M. E., , Kain J. S. , , and Lakshmivarahan S. , 2005: Development of an automated classification procedure for rainfall systems. Mon. Wea. Rev., 133 , 844862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer-Messmer, B., , Smith J. A. , , Baeck M. L. , , and Zhao W. J. , 1997: Heavy rainfall: Contrasting two concurrent Great Plains thunderstorms. Wea. Forecasting, 12 , 785798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, A. A., , and Smith J. A. , 1994: The hydrometeorological environment of extreme rainstorms in the southern Great Plains of the United States. J. Appl. Meteor., 33 , 14181431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., , and Stensrud D. J. , 2000: Climatology of heavy rain events in the United States from hourly precipitation observations. Mon. Wea. Rev., 128 , 11941201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., , Mao H. , , Talbot R. , , and Pollard D. , 2005: Changes in precipitation characteristics over North America for doubled CO2. Geophys. Res. Lett., 32 , L19716. doi:10.1029/2005GL024535.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer Verlag, 208 pp.

  • Emori, S., , and Brown S. J. , 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32 , L17706. doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., , Breidenbach J. P. , , Seo D. J. , , Miller D. A. , , and O’Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., , Knight R. W. , , Easterling D. R. , , Karl T. R. , , Hegerl G. C. , , and Razuvaev V. A. N. , 2005: Trends in intense precipitation in the climate record. J. Climate, 18 , 13261350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hammer, G., , and Steurer P. , 2003: Data documentation for data set 3240 (DSI-3240) hourly precipitation data. National Climatic Data Center Rep., 10 pp.

    • Search Google Scholar
    • Export Citation
  • Hennessy, K. J., , Gregory J. M. , , and Mitchell J. F. B. , 1997: Changes in daily precipitation under enhanced greenhouse conditions. Climate Dyn., 13 , 667680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and Hamilton P. J. , 1988: The relationship of surface pressure features to the precipitation and air-flow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116 , 14441472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., , and Knight R. W. , 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79 , 231241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., 2001: The most extreme precipitation events over the eastern United States from 1950 to 1996: Considerations of scale. J. Hydrometeor., 2 , 309325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61 , 13741387.

  • NOAA, cited. 2006: Definitions of flood and flash flood. [Available online at http://www.srh.noaa.gov/mrx/hydro/flooddef.php].

  • Qi, Y., 2008: Bootstrap and empirical likelihood methods in extremes. Extremes, 11 , 8197.

  • Schumacher, R. S., , and Johnson R. H. , 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133 , 961976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., , and Johnson R. H. , 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21 , 6985.

  • Silva, V. B. S., , and Berbery E. H. , 2006: Intense rainfall events affecting the La Plata Basin. J. Hydrometeor., 7 , 769787.

  • Smith, J. A., , Bradley A. A. , , and Baeck M. L. , 1994: The space–time structure of extreme storm rainfall in the southern plains. J. Appl. Meteor., 33 , 14021417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , Baeck M. L. , , Zhang Y. , , and Doswell C. A. , 2001: Extreme rainfall and flooding from supercell thunderstorms. J. Hydrometeor., 2 , 469489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39 , 667694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42 , 327339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , Dai A. G. , , Rasmussen R. M. , , and Parsons D. B. , 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84 , 12051217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., , and Wigley T. M. L. , 2002: Future changes in the distribution of daily precipitation totals across North America. Geophys. Res. Lett., 29 , 1135. doi:10.1029/2001GL013048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winkler, J. A., , Skeeter B. R. , , and Yamamoto P. D. , 1988: Seasonal variations in the diurnal characteristics of heavy hourly precipitation across the United States. Mon. Wea. Rev., 116 , 16411658.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 6
PDF Downloads 42 42 7

Characterizing Subdiurnal Extreme Precipitation in the Midwestern United States

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana
© Get Permissions
Restricted access

Abstract

This research establishes a methodology to quantify the characteristics of convective cloud systems that produce subdiurnal extreme precipitation. Subdiurnal extreme precipitation events are identified by examining hourly precipitation data from 48 rain gauges in the midwestern United States during the period 1956–2005. Time series of precipitation accumulations for 6-h periods are fitted to the generalized Pareto distribution to determine the 10-yr return levels for the stations. An extreme precipitation event is one in which precipitation exceeds the 10-yr return level over a 6-h period. Return levels in the Midwest vary between 54 and 93 mm for 6-h events. Most of the precipitation contributing to these events falls within 1–2 h. Characteristics of the precipitating systems responsible for the extremes are derived from the National Centers for Environmental Prediction stage II and stage IV multisensor precipitation data. The precipitating systems are treated as objects that are identified using an automated procedure. Characteristics considered include object size and the precipitation mean, variance, and maximum within each object. For example, object sizes vary between 96 and 34 480 km2, suggesting that a wide variety of convective precipitating systems can produce subdiurnal extreme precipitation.

Corresponding author address: Nathan M. Hitchens, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051. Email: nhitchen@purdue.edu

Abstract

This research establishes a methodology to quantify the characteristics of convective cloud systems that produce subdiurnal extreme precipitation. Subdiurnal extreme precipitation events are identified by examining hourly precipitation data from 48 rain gauges in the midwestern United States during the period 1956–2005. Time series of precipitation accumulations for 6-h periods are fitted to the generalized Pareto distribution to determine the 10-yr return levels for the stations. An extreme precipitation event is one in which precipitation exceeds the 10-yr return level over a 6-h period. Return levels in the Midwest vary between 54 and 93 mm for 6-h events. Most of the precipitation contributing to these events falls within 1–2 h. Characteristics of the precipitating systems responsible for the extremes are derived from the National Centers for Environmental Prediction stage II and stage IV multisensor precipitation data. The precipitating systems are treated as objects that are identified using an automated procedure. Characteristics considered include object size and the precipitation mean, variance, and maximum within each object. For example, object sizes vary between 96 and 34 480 km2, suggesting that a wide variety of convective precipitating systems can produce subdiurnal extreme precipitation.

Corresponding author address: Nathan M. Hitchens, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051. Email: nhitchen@purdue.edu

Save