• Abdalati, W., , and Steffen K. , 1997: The apparent effects of the Mt. Pinatubo eruption on the Greenland ice sheet melt extent. Geophys. Res. Lett., 24 , 17951797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ACIA, 2005: Arctic Climate Impact Assessment. Cambridge University Press, 1042 pp.

  • Albritton, D. L., and Coauthors, 2001: Summary for policy makers. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 1–83.

    • Search Google Scholar
    • Export Citation
  • Allerup, P., , Madsen H. , , and Vejen F. , 1998: Estimating true precipitation in arctic areas. Proc. Nordic Hydrological Conf., Helsinki, Finland, Nordic Hydrological Programme Rep. 44, 1–9.

    • Search Google Scholar
    • Export Citation
  • Allerup, P., , Madsen H. , , and Vejen F. , 2000: Correction of precipitation based on off-site weather information. Atmos. Res., 53 , 231250.

  • Alley, R. B., and Coauthors, 2007: Summary for policymakers. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds. Cambridge University Press, 1–18.

    • Search Google Scholar
    • Export Citation
  • Anderson, E. A., 1976: A point energy balance model of a snow cover. NOAA Tech. Rep. NWS 19, 150 pp.

  • Bamber, J., , Ekholm S. , , and Krabill W. , 2001: A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data. J. Geophys. Res., 106 , 67336746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3 , 396409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective analysis using weighted time series observations. NOAA Tech. Memo. ERL NSSL-62, 60 pp.

  • Bjørge, D., , Haugen J. E. , , and Nordeng T. E. , 2000: Future climate in Norway. DNMI Research Rep. 103, Norwegian Meteorological Institute, 41 pp.

    • Search Google Scholar
    • Export Citation
  • Boggild, C. E., , Warren S. G. , , Brandt R. E. , , and Brown K. J. , 2006: Effects of dust and black carbon on albedo of the Greenland ablation zone. Eos, Trans. Amer. Geophys. Union, (Fall Meeting Suppl.), Abstract U22A-05.

    • Search Google Scholar
    • Export Citation
  • Born, E. W., , and Böcher J. , 2001: The ecology of Greenland. Ministry of Environment and Natural Resources Rep., 429 pp.

  • Box, J. E., 2002: Survey of Greenland instrumental temperature records: 1973–2001. Int. Climatol., 22 , 18291847.

  • Box, J. E., , and Steffen K. , 2001: Sublimation estimates for the Greenland ice sheet using automated weather station observations. J. Geophys. Res., 106 , (D24). 3396533982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, J. E., and Coauthors, 2006: Greenland ice sheet surface mass balance variability (1988–2004) from calibrated Polar MM5 output. J. Climate, 19 , 27832800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., , and Denton G. H. , 1990: The role of ocean-atmosphere reorganization in glacial cycles. Quat. Sci. Rev., 9 , 305341.

  • Broecker, W. S., , Peteet D. M. , , and Rind D. , 1985: Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315 , 2126.

  • Brown, R. D., , Brasnett B. , , and Robinson D. , 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41 , 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruland, O., , Liston G. E. , , Vonk J. , , Sand K. , , and Killingtveit A. , 2004: Modelling the snow distribution at two High-Arctic sites at Svalbard, Norway, and at a Sub-Arctic site in Central Norway. Nord. Hydrol., 35 , 191208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. L., , Wilson C. R. , , and Tapley D. B. , 2006: Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313 , 19581960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., , and Kuhry P. , 2000: High-resolution regional climate model validation and permafrost simulation for the East European Russian Arctic. J. Geophys. Res., 105 , 2964729658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., , and Christensen O. B. , 2007: A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81 , 730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., , Christensen O. B. , , Lopez P. , , van Meijgaard E. , , and Botzet M. , 1996: The HIRHAM4 regional atmospheric climate model. DMI Scientific Rep. 96-4, 51 pp.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., , Christensen O. B. , , Schultz J-P. , , Hagemann S. , , and Botzet M. , 2001: High resolution physiographic data set for HIRHAM4: An application to a 50 km horizontal resolution domain covering Europe. DMI Technical Rep. 01–15, 21 pp.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., , Carter T. R. , , Rummukainen M. , , and Amanatidis G. , 2007a: Evaluating the performance and utility of regional climate models: The PRUDENCE project. Climatic Change, 81 , 16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007b: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 848–940.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., , Stendel M. , , Kuhry P. , , Romanovsky V. , , and Walsh J. , 2008: Does permafrost deserve attention in comprehensive climate models? Proc. Ninth Int. Conf. on Permafrost, Fairbanks, AK, University of Alaska Fairbanks, 247–250.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., and Coauthors, 2007: An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climatic Change, 81 , 5370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dethloff, K., and Coauthors, 2002: Recent Greenland accumulation estimated from regional climate model simulations and ice core analysis. J. Climate, 15 , 28212832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dodson, R., , and Marks D. , 1997: Daily air temperature interpolation at high spatial resolution over a large mountainous region. Climate Res., 8 , 120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowdeswell, J. A., and Coauthors, 1997: The Mass balance of Circum-Arctic Glaciers and Recent Climate Change. Quat. Res., 48 , 114.

  • Essery, R. L. H., , Li L. , , and Pomeroy J. W. , 1999: A distributed model of blowing snow over complex terrain. Hydrol. Processes, 13 , 24232438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fettweis, X., 2007: Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR. Cryosphere, 1 , 2140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fettweis, X., , Hanna E. , , Gallée H. , , Huybrechts P. , , and Erpicum M. , 2008: Estimation of the Greenland ice sheet surface mass balance for the 20th and 21st centuries. Cryosphere, 2 , 117129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Førland, E. J., , and Hanssen-Bauer I. , 2003: Climate variations and implications for precipitations types in the Norwegian arctic. Norwegian Meteorological Institute Rep. 24/02, 21 pp.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., , Cooper C. , , Senior C. A. , , Banks H. , , Gregory J. M. , , Johns T. C. , , Mitchell J. F. B. , , and Wood R. A. , 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, E. M., , Liston G. E. , , and Pielke R. A. , 1999: Simulation of above treeline snowdrift formation using a numerical snowtransport model. Cold Reg. Sci. Technol., 30 , 135144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., , Huybrechts P. , , and Raper S. C. B. , 2004: Threatened loss of the Greenland ice-sheet. Nature, 428 , 616.

  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32 , L12703. doi:10.1029/2005GL023209.

    • Search Google Scholar
    • Export Citation
  • Greve, R., 1997a: A continuum-mechanical formulation for shallow polythermal ice sheets. Philos. Trans. Roy. Soc. London, A355 , 921974.

    • Search Google Scholar
    • Export Citation
  • Greve, R., 1997b: Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to a steady-state and transient climate scenarios. J. Climate, 10 , 901918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greve, R., 2005: Relation of measured basal temperatures and the spatial distribution of the geothermal flux for the Greenland ice sheet. Ann. Glaciol., 42 , 424432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., , Huybrechts P. , , and Mote T. , 2002: Surface mass balance of the Greenland ice sheet from climate-analysis data and accumulation/runoff models. Ann. Glaciol., 35 , 6772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., , Huybrechts P. , , Janssens I. , , Cappelen J. , , Steffen K. , , and Stephens A. , 2005: Runoff and mass balance of the Greenland ice sheet: 1958–2003. J. Geophys. Res., 110 , D13108. doi:10.1029/2004JD005641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2008: Increased runoff from melt from the Greenland ice sheet: A response to global warming. J. Climate, 21 , 331341.

  • Hansen, B. U., and Coauthors, 2008: Present Day Climate at Zackenberg. Adv. Ecol. Res., 40 , 115153.

  • Hiemstra, C. A., , Liston G. E. , , and Reiners W. A. , 2002: Snow Redistribution by Wind and Interactions with Vegetation at Upper Treeline in the Medicine Bow Mountains, Wyoming. Arct. Antarct. Alp. Res., 34 , 262273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiemstra, C. A., , Liston G. E. , , and Reiners W. A. , 2006: Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Modell., 197 , 3551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iziomon, M. G., , Mayer H. , , and Matzarakis A. , 2003: Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization. J. Atmos. Sol.-Terr. Phys., 65 , 11071116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssens, I., , and Huybrechts P. , 2000: The treatment of meltwater retention in mass-balance parameterisations of the Greenland ice sheet. Ann. Glaciol., 31 , 133140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johannessen, O. M., , Khvorostovsky K. , , Miles M. W. , , and Bobylev L. P. , 2005: Recent ice-sheet growth in the interior of Greenland. Science Express, 310 , 10131016. doi:10.1126/science.1115356.

    • Search Google Scholar
    • Export Citation
  • Kiilsholm, S., , Christensen J. H. , , Dethloff K. , , and Rinke A. , 2003: Net accumulation of the Greenland ice sheet: High resolution modeling of climate changes. Geophys. Res. Lett., 30 , 1485. doi:10.1029/2002GL015742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., , DesJardins M. , , and Kocin P. J. , 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22 , 14871503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krabill, W., and Coauthors, 1999: Rapid Thinning of Parts of the Southern Greenland Ice Sheet. Science, 283 , 15221524. doi:10.1126/science.283.5407.1522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krabill, W., and Coauthors, 2000: Greenland Ice Sheet: High-elevation balance and peripheral thinning. Science, 289 , 428430. doi:10.1126/science.289.5478.428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krabill, W., and Coauthors, 2004: Greenland Ice Sheet: Increased coastal thinning. Geophys. Res. Lett., 31 , L24402. doi:10.1029/2004GL021533.

  • Kunkel, K. E., 1989: Simple procedures for extrapolation of humidity variables in the mountainous western United States. J. Climate, 2 , 656669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemke, P., and Coauthors, 2007: Observations: Changes in snow, ice and frozen ground. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 338–384.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 1995: Local advection of momentum, heat, and moisture during the melt of patchy snow covers. J. Appl. Meteor., 34 , 17051715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17 , 13811397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., , and Hall D. K. , 1995: An energy-balance model of lake-ice evolution. J. Glaciol., 41 , 373382.

  • Liston, G. E., , and Sturm M. , 1998: A snow-transport model for complex terrain. J. Glaciol., 44 , 498516.

  • Liston, G. E., , and Sturm M. , 2002: Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations. J. Hydrometeor., 3 , 646659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., , and Sturm M. , 2004: The role of winter sublimation in the Arctic moisture budget. Nord. Hydrol., 35 , 325334.

  • Liston, G. E., , and Winther J-G. , 2005: Antarctic surface and subsurface snow and ice melt fluxes. J. Climate, 18 , 14691481.

  • Liston, G. E., , and Elder K. , 2006a: A distributed snow-evolution modeling system (SnowModel). J. Hydrometeor., 7 , 12591276.

  • Liston, G. E., , and Elder K. , 2006b: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7 , 217234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., , Winther J-G. , , Bruland O. , , Elvehøy H. , , and Sand K. , 1999: Below surface ice melt on the coastal Antarctic ice sheet. J. Glaciol., 45 , 273285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., , McFadden J. P. , , Sturm M. , , and Pielke R. A. Sr., 2002: Modeled changes in arctic tundra snow, energy, and moisture fluxes due to increased shrubs. Global Change Biol., 8 , 1732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G. E., , Haehnel R. B. , , Sturm M. , , Hiemstra C. A. , , Berezovskaya S. , , and Tabler R. D. , 2007: Simulating complex snow distributions in windy environments using SnowTran-3D. J. Glaciol., 53 , 241256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutchke, S. B., and Coauthors, 2006: Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314 , 12861289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, D., , Domingo J. , , Susong D. , , Link T. , , and Garen D. , 1999: A spatially distributed energy balance snowmelt model for application in mountain basins. Hydrol. Processes, 13 , 19351959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., , and Liston G. E. , 2010: The influence of air temperature inversions on snowmelt and glacier mass balance simulations, Ammassalik Island, southeast Greenland. J. Appl. Meteor. Climatol., in press.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., , Hasholt B. , , and Liston G. E. , 2006a: Water flow through Mittivakkat Glacier, Ammassalik Island, SE Greenland. Dan. J. Geogr., 106 , 2543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., , Liston G. E. , , Hasholt B. , , and Knudsen N. T. , 2006b: Snow distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, southeast Greenland. J. Hydrometeor., 7 , 808824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., , Liston G. E. , , and Hasholt B. , 2007: Snow-distribution and melt modelling for glaciers in Zackenberg river drainage basin, north-eastern Greenland. Hydrol. Processes, 21 , 32493263. doi:10.1002/hyp.6500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., , Hasholt B. , , Jakobsen B. H. , , and Hansen B. U. , 2008a: Climatic conditions at the Mittivakkat Glacier catchment (1994–2006), Ammassalik Island, SE Greenland, and in a 109-year perspective (1898–2006). Dan. J. Geogr., 108 , 5172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., , Hasholt B. , , and Liston G. , 2008b: Climatic control on river discharge simulations, Zackenberg River drainage basin, northeast Greenland. Hydrol. Processes, 22 , 19321948. doi:10.1002/hyp.6777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., , Liston G. E. , , and Hasholt B. , 2008c: East Greenland freshwater runoff to the Greenland-Iceland-Norwegian Seas 1999–2004 and 2071–2100. Hydrol. Processes, 22 , 45714586. doi:10.1002/hyp.7061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., , Liston G. E. , , Hiemstra C. A. , , and Steffen K. , 2008d: Surface melt area and water balance modeling on the Greenland ice sheet 1995–2005. J. Hydrometeor., 9 , 11911211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., , Liston G. E. , , Hiemstra C. A. , , and Steffen K. , 2009a: Record 2007 Greenland Ice Sheet surface melt extent and runoff. Eos, Trans. Amer. Geophys. Union, 90 .doi:10.1029/2009EO020002.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., , Liston G. E. , , Hiemstra C. A. , , Steffen K. , , Hanna E. , , and Christensen J. H. , 2009b: Greenland Ice Sheet surface mass-balance modelling and freshwater flux for 2007, and in a 1995–2007 perspective. Hydrol. Processes, 23 , 24702484. doi:10.1002/hyp.7354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., , Liston G. E. , , Steffen K. , , and Chylek P. , 2009c: Meltwater flux and runoff modeling in the ablation area of the Jakobshavn Isbræ, West Greenland. J. Glaciol., in press.

    • Search Google Scholar
    • Export Citation
  • Mote, T. L., 2003: Estimations of runoff rates, mass balance, and elevation changes on the Greenland ice sheet from passive microwave observations. J. Geophys. Res., 108 , 4056. doi:10.1029/2001JD002032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, T. L., 2007: Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34 , L22507. doi:10.1029/2007GL031976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke R. A. Sr., , 2002: Mesoscale Meteorological Modeling. Academic Press, 676 pp.

  • Pomeroy, J. W., , and Essery R. L. H. , 1999: Turbulent fluxes during blowing snow: Field test of model sublimation predictions. Hydrol. Processes, 13 , 29632975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., , and Brun E. , 2001: Physical properties of snow. Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems, H. G. Jones, et al., Eds., Cambridge University Press, 45–118.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., , Gallani M. L. , , Rowntree P. R. , , and Stratton R. A. , 2000: The impact of new physical parametrizations in the Hadley Centre climate model—HadAM3. Climate Dyn., 16 , 123146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasad, R., , Tarboton D. G. , , Liston G. E. , , Luce C. H. , , and Seyfried M. S. , 2001: Testing a blowing snow model against distributed snow measurements at Upper Sheep Creek. Water Resour. Res., 37 , 13411357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putnins, P., 1970: The climate of Greenland. Climates of the Polar Regions, S. Orvig, Ed., Vol. 12, World Survey of Climatology, Elsevier Science, 3–112.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and Coauthors, 2005: Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett., 32 , L23605. doi:10.1029/2005GL023655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramillien, G., , Lombard A. , , Cazanave A. , , Ivins E. R. , , Llubes M. , , Remy F. , , and Biancala R. , 2006: Interannual variations of the mass balance of the Antarctic and Greenland ice sheet from GRACE. Global Planet. Change, 53 , 198208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon, et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Richter-Menge, J., and Coauthors, 2007: Greenland ice sheet mass balance. Arctic Report Card 2007, NOAA Rep., 45 pp. [Available online at http://www.arctic.noaa.gov/report07/ArcticReportCard_full_report.pdf].

    • Search Google Scholar
    • Export Citation
  • Rignot, E., , Box J. E. , , Burgess E. , , and Hanna E. , 2008: Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35 , L20502. doi:10.1029/2008GL035417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Inst. Für Meteorologie Rep. 218, 94 pp.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. Max-Planck-Inst. Für Meteorologie 349, 140 pp.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. C., 1977: A mathematical model for diagnosis and prediction of surface winds in mountains terrain. J. Appl. Meteor., 16 , 15471564.

    • Search Google Scholar
    • Export Citation
  • Scambos, T., , and Haran T. , 2002: An image-enhanced DEM of the Greenland Ice Sheet. Ann. Glaciol., 34 , 291298.

  • Serreze, M. C., , and Barry R. G. , 2005: The Arctic Climate System. Cambridge University Press, 385 pp.

  • Steffen, K., 1995: Surface energy exchange during the onset of melt at the equilibrium line altitude of the Greenland ice sheet. Ann. Glaciol., 21 , 1318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stendel, M., , Romanovsky V. E. , , Christensen J. H. , , and Sazonova T. , 2007: Using dynamical downscaling to close the gap between global change scenarios and local permafrost dynamics. Global Planet. Change, 56 , 203214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stendel, M., , Christensen J. H. , , and Petersen D. , 2008: Arctic Climate and Climate Change with a Focus on Greenland. Adv. Ecol. Res., 40 , 1343. doi:10.1016/S0065-2504(07)00002-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2001: Physical climate processes and feedbacks. Climate Change 2001: The Scientific Basis, J. T. Houghton, et al., Eds., Cambridge University Press, 417–470.

    • Search Google Scholar
    • Export Citation
  • Sturm, M., , Holmgren J. , , and Liston G. E. , 1995: Seasonal snow cover classification system for local to global applications. J. Climate, 8 , 12611283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, M., , Schimel J. , , Michaelson G. , , Welker J. M. , , Oberbauer S. F. , , Liston G. E. , , Fahnestock J. , , and Romanovsky V. E. , 2005: Winter biological processes could help convert Arctic tundra to shrubland. Bioscience, 55 , 1726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, F., , Adam J. C. , , Trenberth K. E. , , and Lettenmaier D. P. , 2006: Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis. J. Geophys. Res., 111 , D05110. doi:10.1029/2005JD006387.

    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., , Braconnot P. , , and Marti O. , 2006: Sensitivity of the Atlantic Meridional Overturning Circulation to the melting from northern glaciers in climate change experiments. Geophys. Res. Lett., 33 , L07711. doi:10.1029/2006GL025765.

    • Search Google Scholar
    • Export Citation
  • Tarboton, D. G., , Chowdhury T. G. , , and Jackson T. H. , 1995: A spatially distributed energy balance snowmelt model. Biogeochemistry of Seasonally Snow-Covered Catchments, IAHS Publication 228, IAHS, 141–155.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., 2007: 2006 Greenland Ice Sheet snowmelt from spaceborne microwave brightness temperatures. Eos, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO220003.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., , Fettweis X. , , Broeke M. , , Wal R. , , and Smeets P. , 2008: Extreme snowmelt in northern Greenland during summer 2008. Eos, Trans. Amer. Geophys. Union, 89 .doi:10.1029/2008EO410004.

    • Search Google Scholar
    • Export Citation
  • Thomas, R., , Frederick E. , , Krabill W. , , Manizade S. , , and Martin C. , 2006: Progressive increase in ice loss from Greenland. Geophys. Res. Lett., 33 , L10503. doi:10.1029/2006GL026075.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., , Running S. W. , , and White M. A. , 1997: Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol., 190 , 214251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velicogna, I., , and Wahr J. , 2005: Greenland mass balance from GRACE. Geophys. Res. Lett., 32 , L18505. doi:10.1029/2005GL023955.

  • Velicogna, I., , and Wahr J. , 2006: Acceleration of Greenland ice mass loss in spring 2004. Nature, 443 , 329331.

  • Walcek, C. J., 1994: Cloud cover and its relationship to relative humidity during a spring midlatitude cyclone. Mon. Wea. Rev., 122 , 10211035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., , Chapman W. L. , , Romanovsky V. , , Christensen J. H. , , and Stendel M. , 2008: Global climate model performance over Alaska and Greenland. J. Climate, 21 , 21562174.

    • Search Google Scholar
    • Export Citation
  • Warrick, R., , and Oerlemans J. , 1990: Sea level rise. Climate Change: The IPCC Scientific Assessment, J. T. Houghton, G. J. Jenkins, and J. J. Ephraums, Eds., Cambridge University Press, 261–281.

    • Search Google Scholar
    • Export Citation
  • Winstral, A., , and Marks D. , 2002: Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol. Processes, 16 , 35853603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., , Ishida S. , , Goodison B. E. , , and Gunther T. , 1999: Bias correction of precipitation data for Greenland. J. Geophys. Res., 104 , (D6). 61716181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwally, J. H., , Giovinetto M. , , Li J. , , Cornejo H. , , Beckley M. , , Brenner A. , , Saba J. , , and Yi D. , 2005: Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51 , 509527.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 113 113 12
PDF Downloads 59 59 4

Greenland Ice Sheet Surface Mass-Balance Modeling in a 131-Yr Perspective, 1950–2080

View More View Less
  • 1 International Arctic Research Center, and Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 2 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
  • | 3 Danish Climate Centre, Danish Meteorological Institute, Copenhagen, Denmark
© Get Permissions
Restricted access

Abstract

Fluctuations in the Greenland ice sheet (GrIS) surface mass balance (SMB) and freshwater influx to the surrounding oceans closely follow climate fluctuations and are of considerable importance to the global eustatic sea level rise. A state-of-the-art snow-evolution modeling system (SnowModel) was used to simulate variations in the GrIS melt extent, surface water balance components, changes in SMB, and freshwater influx to the ocean. The simulations are based on the Intergovernmental Panel on Climate Change scenario A1B modeled by the HIRHAM4 regional climate model (RCM) using boundary conditions from the ECHAM5 atmosphere–ocean general circulation model (AOGCM) from 1950 through 2080. In situ meteorological station [Greenland Climate Network (GC-Net) and World Meteorological Organization (WMO) Danish Meteorological Institute (DMI)] observations from inside and outside the GrIS were used to validate and correct RCM output data before they were used as input for SnowModel. Satellite observations and independent SMB studies were used to validate the SnowModel output and confirm the model’s robustness. The authors simulated an ∼90% increase in end-of-summer surface melt extent (0.483 × 106 km2) from 1950 to 2080 and a melt index (above 2000-m elevation) increase of 138% (1.96 × 106 km2 × days). The greatest difference in melt extent occurred in the southern part of the GrIS, and the greatest changes in the number of melt days were seen in the eastern part of the GrIS (∼50%–70%) and were lowest in the west (∼20%–30%). The rate of SMB loss, largely tied to changes in ablation processes, leads to an enhanced average loss of 331 km3 from 1950 to 2080 and an average SMB level of −99 km3 for the period 2070–80. GrIS surface freshwater runoff yielded a eustatic rise in sea level from 0.8 ± 0.1 (1950–59) to 1.9 ± 0.1 mm (2070–80) sea level equivalent (SLE) yr−1. The accumulated GrIS freshwater runoff contribution from surface melting equaled 160-mm SLE from 1950 through 2080.

* Current affiliation: Climate, Ocean, and Sea Ice Modeling Group, Computational Physics and Methods, Los Alamos National Laboratory, Los Alamos, New Mexico.

Corresponding author address: Dr. Sebastian H. Mernild, Climate, Ocean, and Sea Ice Modeling Group, Computational Physics and Methods (CCS-2), Los Alamos National Laboratory, Mail Stop B296, Los Alamos, NM 87545. Email: mernild@lanl.gov

Abstract

Fluctuations in the Greenland ice sheet (GrIS) surface mass balance (SMB) and freshwater influx to the surrounding oceans closely follow climate fluctuations and are of considerable importance to the global eustatic sea level rise. A state-of-the-art snow-evolution modeling system (SnowModel) was used to simulate variations in the GrIS melt extent, surface water balance components, changes in SMB, and freshwater influx to the ocean. The simulations are based on the Intergovernmental Panel on Climate Change scenario A1B modeled by the HIRHAM4 regional climate model (RCM) using boundary conditions from the ECHAM5 atmosphere–ocean general circulation model (AOGCM) from 1950 through 2080. In situ meteorological station [Greenland Climate Network (GC-Net) and World Meteorological Organization (WMO) Danish Meteorological Institute (DMI)] observations from inside and outside the GrIS were used to validate and correct RCM output data before they were used as input for SnowModel. Satellite observations and independent SMB studies were used to validate the SnowModel output and confirm the model’s robustness. The authors simulated an ∼90% increase in end-of-summer surface melt extent (0.483 × 106 km2) from 1950 to 2080 and a melt index (above 2000-m elevation) increase of 138% (1.96 × 106 km2 × days). The greatest difference in melt extent occurred in the southern part of the GrIS, and the greatest changes in the number of melt days were seen in the eastern part of the GrIS (∼50%–70%) and were lowest in the west (∼20%–30%). The rate of SMB loss, largely tied to changes in ablation processes, leads to an enhanced average loss of 331 km3 from 1950 to 2080 and an average SMB level of −99 km3 for the period 2070–80. GrIS surface freshwater runoff yielded a eustatic rise in sea level from 0.8 ± 0.1 (1950–59) to 1.9 ± 0.1 mm (2070–80) sea level equivalent (SLE) yr−1. The accumulated GrIS freshwater runoff contribution from surface melting equaled 160-mm SLE from 1950 through 2080.

* Current affiliation: Climate, Ocean, and Sea Ice Modeling Group, Computational Physics and Methods, Los Alamos National Laboratory, Los Alamos, New Mexico.

Corresponding author address: Dr. Sebastian H. Mernild, Climate, Ocean, and Sea Ice Modeling Group, Computational Physics and Methods (CCS-2), Los Alamos National Laboratory, Mail Stop B296, Los Alamos, NM 87545. Email: mernild@lanl.gov

Save