Implications of Ensemble Quantitative Precipitation Forecast Errors on Distributed Streamflow Forecasting

Giuseppe Mascaro Dipartimento di Ingegneria del Territorio, Università di Cagliari, Cagliari, Italy

Search for other papers by Giuseppe Mascaro in
Current site
Google Scholar
PubMed
Close
,
Enrique R. Vivoni School of Earth and Space Exploration, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona

Search for other papers by Enrique R. Vivoni in
Current site
Google Scholar
PubMed
Close
, and
Roberto Deidda Dipartimento di Ingegneria del Territorio, Università di Cagliari, Cagliari, Italy

Search for other papers by Roberto Deidda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Evaluating the propagation of errors associated with ensemble quantitative precipitation forecasts (QPFs) into the ensemble streamflow response is important to reduce uncertainty in operational flow forecasting. In this paper, a multifractal rainfall downscaling model is coupled with a fully distributed hydrological model to create, under controlled conditions, an extensive set of synthetic hydrometeorological events, assumed as observations. Subsequently, for each event, flood hindcasts are simulated by the hydrological model using three ensembles of QPFs—one reliable and the other two affected by different kinds of precipitation forecast errors—generated by the downscaling model. Two verification tools based on the verification rank histogram and the continuous ranked probability score are then used to evaluate the characteristics of the correspondent three sets of ensemble streamflow forecasts. Analyses indicate that the best forecast accuracy of the ensemble streamflows is obtained when the reliable ensemble QPFs are used. In addition, results underline (i) the importance of hindcasting to create an adequate set of data that span a wide range of hydrometeorological conditions and (ii) the sensitivity of the ensemble streamflow verification to the effects of basin initial conditions and the properties of the ensemble precipitation distributions. This study provides a contribution to the field of operational flow forecasting by highlighting a series of requirements and challenges that should be considered when hydrologic ensemble forecasts are evaluated.

Corresponding author address: Giuseppe Mascaro, Dipartimento di Ingegneria del Territorio, Università di Cagliari, Piazza d’Armi 5, 09123 Cagliari, Italy. Email: gmascaro@unica.it

Abstract

Evaluating the propagation of errors associated with ensemble quantitative precipitation forecasts (QPFs) into the ensemble streamflow response is important to reduce uncertainty in operational flow forecasting. In this paper, a multifractal rainfall downscaling model is coupled with a fully distributed hydrological model to create, under controlled conditions, an extensive set of synthetic hydrometeorological events, assumed as observations. Subsequently, for each event, flood hindcasts are simulated by the hydrological model using three ensembles of QPFs—one reliable and the other two affected by different kinds of precipitation forecast errors—generated by the downscaling model. Two verification tools based on the verification rank histogram and the continuous ranked probability score are then used to evaluate the characteristics of the correspondent three sets of ensemble streamflow forecasts. Analyses indicate that the best forecast accuracy of the ensemble streamflows is obtained when the reliable ensemble QPFs are used. In addition, results underline (i) the importance of hindcasting to create an adequate set of data that span a wide range of hydrometeorological conditions and (ii) the sensitivity of the ensemble streamflow verification to the effects of basin initial conditions and the properties of the ensemble precipitation distributions. This study provides a contribution to the field of operational flow forecasting by highlighting a series of requirements and challenges that should be considered when hydrologic ensemble forecasts are evaluated.

Corresponding author address: Giuseppe Mascaro, Dipartimento di Ingegneria del Territorio, Università di Cagliari, Piazza d’Armi 5, 09123 Cagliari, Italy. Email: gmascaro@unica.it

Save
  • Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate, 9 , 15181530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 1997: The impact of dynamical constraints on the selection of initial conditions on ensemble predictions: Low-order perfect model results. Mon. Wea. Rev., 125 , 29692983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arduino, G., Reggiani P. , and Todini E. , 2005: Recent advances in flood forecasting and risk assessment. Hydrol. Earth Syst. Sci., 9 , 280284.

  • Bell, V. A., and Moore R. J. , 2000: The sensitivity of catchment runoff models to rainfall data at different spatial scales. Hydrol. Earth Syst. Sci., 4 , 653667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, A. A., Schwartz S. S. , and Hashino T. , 2004: Distributions-oriented verification of ensemble streamflow predictions. J. Hydrometeor., 5 , 532545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probabilities. Mon. Wea. Rev., 78 , 13.

  • Brown, T. A., 1974: Admissible scoring systems for continuous distributions. The Rand Corporation Paper P-5235, 24 pp. [Available from The Rand Corporation, 1700 Main St., Santa Monica, CA 90407-2138].

    • Search Google Scholar
    • Export Citation
  • Cartwright, T. J., and Krishnamurti T. N. , 2007: Warm season mesoscale superensemble precipitation forecasts in the southeastern United States. Wea. Forecasting, 22 , 873886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charba, P. J., Reynolds W. D. , McDonald B. E. , and Carter G. M. , 2003: Comparative verification of recent quantitative precipitation forecasts in the National Weather Service: A simple approach for scoring forecast accuracy. Wea. Forecasting, 18 , 161183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., Krajewski W. F. , and Villarini G. , 2007: Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data. J. Hydrometeor., 8 , 13251347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deidda, R., 2000: Rainfall downscaling in a space-time multifractal framework. Water Resour. Res., 36 , 17791794. doi:10.1029/2000WR900038.

  • Deidda, R., Benzi R. , and Siccardi F. , 1999: Multifractal modeling of anomalous scaling laws in rainfall. Water Resour. Res., 35 , 18531867.

  • Deidda, R., Badas M. G. , and Piga E. , 2004: Space-time scaling in high-intensity Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) storms. Water Resour. Res., 40 , W02056. doi:10.1029/2003WR002574.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Damhart U. , Wergen W. , and Baldwin M. , 2003: The WGNE assessment of short-term quantitative precipitation forecasts. Bull. Amer. Meteor. Soc., 84 , 481492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: A scoring system for probability forecasts of ranked categories. J. Appl. Meteor., 8 , 985987.

  • Ferraris, L., Rudari R. , and Siccardi F. , 2002: The uncertainty in the prediction of flash floods in the northern Mediterranean environment. J. Hydrometeor., 3 , 714727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franz, K. J., Hatmann H. C. , Sorooshian S. , and Bales R. , 2003: Verification of National Weather Service ensemble streamflow predictions for water supply forecasting in the Colorado River basin. J. Hydrometeor., 4 , 11051118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and Sharman R. , 2008: The use of structure functions and spectra from numerical model output to determine effective model resolution. Mon. Wea. Rev., 136 , 15371553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friederichs, P., and Hense A. , 2007: Statistical downscaling of extreme precipitation events using censored quantile regression. Mon. Wea. Rev., 135 , 23652378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgakakos, K. P., Seo D-J. , Gupta H. , Schaake J. , and Butts M. B. , 2004: Towards the characterization of streamflow simulation uncertainty through multimodel ensembles. J. Hydrol., 298 , 222241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouweleeuw, B. T., Thielen J. , Franchello G. , De Roo A. P. J. , and Buizza R. , 2005: Flood forecasting using medium-range probabilistic weather prediction. Hydrol. Earth Syst. Sci., 9 , 365380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129 , 550560.

  • Hamill, T. M., and Colucci S. J. , 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125 , 13121327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Colucci S. J. , 1998: Evaluation of Eta–RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126 , 711724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., Bradley A. A. , and Schwartz S. S. , 2007: Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrol. Earth Syst. Sci., 11 , 939950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, L. E., and Clark M. P. , 2003: Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol., 282 , 5675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15 , 559570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanov, V. Y., Vivoni E. R. , Bras R. L. , and Entekhabi D. , 2004a: Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resour. Res., 40 , W11102. doi:10.1029/2004WR003218.

    • Search Google Scholar
    • Export Citation
  • Ivanov, V. Y., Vivoni E. R. , Bras R. L. , and Entekhabi D. , 2004b: Preserving high-resolution surface and rainfall data in operational-scale basin hydrology: A fully-distributed physically-based approach. J. Hydrol., 298 , 80111. doi:10.1016/j.jhydrol.2004.03.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasper, K., Gurtz J. , and Lang H. , 2002: Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. J. Hydrol., 267 , 4042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juang, H-M. H., and Kanamitsu M. , 1994: The NMC nested regional spectral model. Mon. Wea. Rev., 122 , 326.

  • Kabold, M., and Suselj K. , 2005: Precipitation forecasts and their uncertainty as input into hydrological models. Hydrol. Earth Syst. Sci., 9 , 322332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirpich, Z. P., 1940: Time of concentration of small agricultural watersheds. Civ. Eng. (N.Y.), 10 , 362.

  • Krajewski, W. F., Ciach G. J. , and Villarini G. V. , 2005: Towards probabilistic quantitative precipitation WSR-88D algorithms: Data analysis and development of ensemble generator model: Phase 4. IIHR-Hydroscience and Engineering, The University of Iowa, Final Rep., 203 pp.

    • Search Google Scholar
    • Export Citation
  • Laio, F., and Tamea S. , 2007: Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol. Earth Syst. Sci., 11 , 12671277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M. S., Kuo Y. H. , Barker D. M. , and Lim E. , 2006: Incremental analysis updates initialization technique applied to 10-km MM5 and MM5 3DVAR. Mon. Wea. Rev., 134 , 13891404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., Martina M. L. V. , and Todini E. , 2005: Flood forecasting using a fully distributed model: Application of the TOPKAPI model to the Upper Xixian Catchment. Hydrol. Earth Syst. Sci., 9 , 347364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martina, M. L. V., and Entekhabi D. , 2006: Identification of runoff generation spatial distribution using conventional hydrologic gauge time series. Water Resour. Res., 42 , W08431. doi:10.1029/2005WR004783.

    • Search Google Scholar
    • Export Citation
  • Mascaro, G., Deidda R. , and Vivoni E. R. , 2008: A new verification method to ensure consistent ensemble forecasts through calibrated precipitation downscaling models. Mon. Wea. Rev., 136 , 33743391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30 , 291303.

  • Matheson, J. E., and Winkler R. L. , 1976: Scoring rules for continuous probability distributions. Manage. Sci., 22 , 10871095.

  • Murphy, A. H., 1971: A note on the ranked probability score. J. Appl. Meteor., 10 , 155156.

  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12 , 595600.

  • Over, T. M., and Gupta V. K. , 1994: Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing. J. Appl. Meteor., 33 , 15261542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Over, T. M., and Gupta V. K. , 1996: A space-time theory of mesoscale rainfall using random cascades. J. Geophys. Res., 101 , 2631926332.

  • Perica, S., and Foufoula-Georgiou E. , 1996: A model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. J. Geophys. Res., 101 , 2634726361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pessoa, M., Bras R. L. , and Williams E. R. , 1993: Use of weather radar for flood forecasting in the Sieve River basin: A sensitivity analysis. J. Appl. Meteor., 32 , 462475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rezacova, D., Sokol Z. , and Pesice P. , 2007: A radar-based verification of precipitation forecast for local convective storms. Atmos. Res., 83 , 211224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roulin, E., 2007: Skill and relative economic value of medium-range hydrological ensemble predictions. Hydrol. Earth Syst. Sci., 11 , 725737.

  • Roulin, E., and Vannitsem S. , 2005: Skill of medium-range hydrological ensemble predictions. J. Hydrol., 6 , 729744.

  • Schaake, J. C., Hamill T. M. , Buizza R. , and Clark M. , 2007: HEPEX: The Hydrological Ensemble Prediction Experiment. Bull. Amer. Meteor. Soc., 88 , 15411547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schertzer, D., and Lovejoy S. , 1987: Physical modeling and analysis of rain and clouds by anisotropic scaling of multiplicative processes. J. Geophys. Res., 92 , (D8). 96939714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, D-J., Perica S. , Welles E. , and Schaake J. C. , 2000: Simulation of precipitation fields from probabilistic quantitative precipitation forecasts. J. Hydrol., 239 , 203229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, D-J., Herr H. D. , and Schaake J. C. , 2006: A statistical post processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction. Hydrol. Earth Syst. Sci., 3 , 19872035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132 , 30193032.

  • Smith, L. A., and Hansen J. A. , 2004: Extending the limits of ensemble forecast verification with the minimum spanning tree. Mon. Wea. Rev., 132 , 15221528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swets, J., 1973: The relative operating characteristic in psychology. Science, 182 , 990999.

  • Talagrand, O., Vautard R. , and Strauss B. , 1997: Evaluation of probabilistic systems. Proc. ECMWF Workshop on Predictability, Vol. 125, Reading, United Kingdom, ECMWF, 1–25. [Available from ECMWF, Shinfield Park, Reading, Berkshire RG2 9AX, United Kingdom].

    • Search Google Scholar
    • Export Citation
  • Venugopal, V., Foufula-Georgiou E. , and Sapozhnikov V. , 1999a: Evidence of dynamic scaling in space-time rainfall. J. Geophys. Res., 104 , 3159931610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venugopal, V., Foufula-Georgiou E. , and Sapozhnikov V. , 1999b: A space-time downscaling model for rainfall. J. Geophys. Res., 104 , 1970519721.

  • Venugopal, V., Basu S. , and Foufoula-Georgiou E. , 2005: A new metric for comparing precipitation patterns with an application to ensemble forecasts. J. Geophys. Res., 110 , D08111. doi:10.1029/2004JD005395.

    • Search Google Scholar
    • Export Citation
  • Verbunt, M., Walser A. , Gurtz J. , Montani A. , and Schr C. , 2007: Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies. J. Hydrometeor., 8 , 897909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Ivanov V. Y. , Bras R. L. , and Entekhabi D. , 2004: Generation of triangulated irregular networks based on hydrological similarity. J. Hydrol. Eng., 9 , 288302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Ivanov V. Y. , Bras R. L. , and Entekhabi D. , 2005: On the effects of triangulated terrain resolution on distributed hydrologic model response. Hydrol. Processes, 19 , 21012122. doi:10.1002/hyp.5671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Entekhabi D. , Bras R. L. , Ivanov V. Y. , Van Horne M. P. , Grassotti C. , and Hoffman R. N. , 2006: Extending the predictability of hydrometeorological flood events using radar rainfall nowcasting. J. Hydrometeor., 7 , 660677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Entekhabi D. , Bras R. L. , and Ivanov V. Y. , 2007a: Controls on runoff generation and scale-dependence in a distributed hydrologic model. Hydrol. Earth Syst. Sci., 11 , 16381701.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Entekhabi D. , and Hoffman R. N. , 2007b: Error propagation of radar rainfall nowcasting fields through a fully distributed flood forecasting model. J. Appl. Meteor. Climatol., 46 , 932940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., Clark M. P. , Diks C. G. H. , Duan Q. , and Robinson D. A. , 2006: Multi-objective calibration of forecast ensembles using Bayesian model averaging. Geophys. Res. Lett., 33 , L19817. doi:10.1029/2006GL027126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., Brandes E. A. , Sun J. , Yates D. N. , and Mueller C. K. , 2000: Prediction of a flash flood in complex terrain. Part I: A comparison of rainfall estimates from radar, and very short range rainfall simulations from a dynamic model and an automated algorithmic system. J. Appl. Meteor., 39 , 797814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., Hay L. E. , and Leavesley G. H. , 1999: A comparison of downscaled and raw GCM output: Implications for climate change scenarios in the San Juan River basin, Colorado. J. Hydrol., 225 , 6791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2004: The minimum spanning tree histogram as a verification tool for multidimensional ensemble forecasts. Mon. Wea. Rev., 132 , 13291340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Wilks, D. S., and Hamill T. M. , 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135 , 23792390.

  • Wilson, L. J., Burrows W. R. , and Lanzinger A. , 1999: A strategy for verification of weather element forecasts from an ensemble prediction system. Mon. Wea. Rev., 127 , 956970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and Schaake J. C. , 2008: Correcting errors in streamflow forecast ensemble mean and spread. J. Hydrometeor., 9 , 132148.

  • Yuan, H., Mullen S. L. , Gao X. , Sorooshian S. , Du J. , and Juang H-M. H. , 2007: Short-range probabilistic quantitative precipitation forecasts over the southwest United States by the RSM ensemble system. Mon. Wea. Rev., 135 , 16851698.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1228 641 35
PDF Downloads 376 62 10