• Bouchet, R. J., 1963: Évapotranspiration réelle, évapotranspiration potentielle, et production agricole. Ann. Agron., 14 , 743824.

  • Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History and Applications. Kluwer Academic Publishers, 299 pp.

  • Brutsaert, W., 2005: Hydrology: An Introduction. Cambridge University Press, 605 pp.

  • Brutsaert, W., 2006: Indications of increasing land surface evaporation during the second half of the 20th century. Geophys. Res. Lett., 33 , L20403. doi:10.1029/2006GL027532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., , and Parlange M. B. , 1998: Hydrologic cycle explains the evaporation paradox. Nature, 396 , 30.

  • Chattopadhyay, N., , and Hulme M. , 1997: Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric. For. Meteor., 87 , 5573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CSIRO and BOM, 2007: Climate change in Australia. CSIRO and BOM Tech. Rep. 2007, 148 pp.

  • Golubev, V. S., , Lawrimore J. H. , , Groisman P. Y. , , Speranskaya N. A. , , Zhuravin S. A. , , Menne M. J. , , Peterson T. C. , , and Malone R. W. , 2001: Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophys. Res. Lett., 28 , 26652668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horizon Agriculture Pty Ltd, 2006: MetAccess national weather database. Horizon Agriculture Pty Ltd.

  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319 , 8395.

  • Johnson, F., , and Sharma A. , 2009: Measurement of GCM skill in predicting variables relevant for hydroclimatological assessments. J. Climate, 22 , 43734382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jovanovic, B., , Jones D. A. , , and Collins D. , 2007: A high-quality monthly pan evaporation dataset for Australia. Climatic Change, 87 , 517535.

    • Search Google Scholar
    • Export Citation
  • Kahler, D. M., , and Brutsaert W. , 2006: Complementary relationship between daily evaporation in the environment and pan evaporation. Water Resour. Res., 42 , W05413. doi:10.1029/2005WR004541.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kirono, D. G. C., , and Jones R. N. , 2007: A bivariate test for detecting inhomogeneities in pan evaporation time series. Aust. Meteor. Mag., 56 , 93103.

    • Search Google Scholar
    • Export Citation
  • Kirono, D. G. C., , Jones R. N. , , and Cleugh H. A. , 2009: Pan-evaporation measurement and Morton-point potential evaporation estimates in Australia: Are their trends the same? Int. J. Climatol., 29 , 711718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrimore, J. H., , and Peterson T. C. , 2000: Pan evaporation trends in dry and humid regions of the United States. J. Hydrometeor., 1 , 543546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linacre, E. T., 1994: Estimating U.S. class A pan evaporation from few climate data. Water Int., 19 , 514.

  • Liu, B. H., , Xu M. , , Henderson M. , , and Gong W. G. , 2004: A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res., 109 , D15102. doi:10.1029/2004JD004511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., , Vecchi G. A. , , and Reichler T. , 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34 , L06805. doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • McKenney, M. S., , and Rosenberg N. J. , 1993: Sensitivity of Some Potential Evapotranspiration Estimation Methods to Climate Change. Agric. For. Meteor., 64 , 81110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., , Van Niel T. G. , , Li L. T. , , Roderick M. L. , , Rayner D. P. , , Ricciardulli L. , , and Donohue R. J. , 2008: Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys. Res. Lett., 35 , L20403. doi:10.1029/2008GL035627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

    • Search Google Scholar
    • Export Citation
  • Morton, F. I., 1983: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol., 66 , 176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., , Sexton D. M. H. , , Barnett D. N. , , Jones G. S. , , Webb M. J. , , Collins M. , , and Stainforth D. A. , 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430 , 768772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and Coauthors, 2000: Summary for policymakers. IPCC Special Report: Emissions Scenarios, N. Nakicenovic and R. Swart, Eds., 27 pp.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and Wild M. , 2007: Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming,” and solar “brightening”. J. Geophys. Res., 112 , D08214. doi:10.1029/2006JD007794.

    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural Evaporation from Open Water, Bare Soil and Grass. Proc. Roy. Soc. London, A193 , 120145.

  • Perkins, S. E., , Pitman A. J. , , Holbrook N. J. , , and McAneney J. , 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20 , 43564376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prescott, J. A., 1940: Evaporation from a water surface in relation to solar radiation. Trans. Roy. Soc. South Aust., 64 , 114125.

  • Priestley, C. H., , and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100 , 8192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, D. P., 2007: Wind run changes: The dominant factor affecting pan evaporation trends in Australia. J. Climate, 20 , 33793394.

  • Reichler, T., , and Kim J. , 2008: Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model. J. Geophys. Res., 113 , D05106. doi:10.1029/2007JD009278.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., , and Farquhar G. D. , 2004: Changes in Australian pan evaporation from 1970 to 2002. Int. J. Climatol., 24 , 10771090.

  • Roderick, M. L., , and Farquhar G. D. , 2005: Changes in New Zealand pan evaporation since the 1970s. Int. J. Climatol., 25 , 20312039.

  • Roderick, M. L., , Rotstayn L. D. , , Farquhar G. D. , , and Hobbins M. T. , 2007: On the attribution of changing pan evaporation. Geophys. Res. Lett., 34 , L17403. doi:10.1029/2007GL031166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., , Hobbins M. T. , , and Farquhar G. D. , 2009a: Pan evaporation trends and the terrestrial water balance. I. Principles and observations. Geogr. Compass, 3 , 746760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., , Hobbins M. T. , , and Farquhar G. D. , 2009b: Pan evaporation trends and the terrestrial water balance. II. Energy balance and interpretation. Geogr. Compass, 3 , 761780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., , Roderick M. L. , , and Farquhar G. D. , 2006: A simple pan-evaporation model for analysis of climate simulations: Evaluation over Australia. Geophys. Res. Lett., 33 , L17715. doi:10.1029/2006GL027114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and Coauthors, 2007: Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols. J. Geophys. Res., 112 , D09202. doi:10.1029/2006JD007712.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , Fu Q. , , Randel W. J. , , and Reichler T. J. , 2008: Widening of the tropical belt in a changing climate. Nature Geosci., 1 , 2124.

  • Sharma, A., 2000: Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1 — A strategy for system predictor identification. J. Hydrol., 239 , 232239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1993: Evaporation. Handbook of Hydrology, D. R. Maidment, Ed., McGraw-Hill, 4.1–4.53.

  • Shuttleworth, W. J., , Serrat-Capdevila A. , , Roderick M. L. , , and Scott R. , 2009: On the theory relating changes in area-average and pan evaporation. Quart. J. Roy. Meteor. Soc., 135 , 12301247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szilagyi, J., 2007: On the inherent asymmetric nature of the complementary relationship of evaporation. Geophys. Res. Lett., 34 , L02405. doi:10.1029/2006GL028708.

    • Search Google Scholar
    • Export Citation
  • Thom, A. S., , Thony J-L. , , and Vauclin M. , 1981: On the proper employment of evaporation pans and atmometers in estimating potential transpiration. Quart. J. Roy. Meteor. Soc., 107 , 711736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Dijk, M. H., 1985: Reduction in evaporation due to the bird screen used in the Australian class A pan evaporation network. Aust. Meteor. Mag., 33 , 181183.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., , and Wigley T. M. L. , 2000: Precipitation predictors for downscaling: Observed and general circulation model relationships. Int. J. Climatol., 20 , 641661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., , Trüssel B. , , Ohmura A. , , Long C. N. , , König-Langlo G. , , Dutton E. G. , , and Tsvetkov A. , 2009: Global dimming and brightening: An update beyond 2000. J. Geophys. Res., 114 , D00D13. doi:10.1029/2008JD011382.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 133 27
PDF Downloads 119 119 25

A Comparison of Australian Open Water Body Evaporation Trends for Current and Future Climates Estimated from Class A Evaporation Pans and General Circulation Models

View More View Less
  • 1 University of New South Wales, Sydney, New South Wales, Australia
© Get Permissions
Restricted access

Abstract

Trends of decreasing pan evaporation around the world have renewed interest in evaporation and its behavior in a warming world. Observed pan evaporation around Australia has been modeled to attribute changes in its constituent variables. It is found that wind speed decreases have generally led to decreases in pan evaporation. Trends were also calculated from reanalysis and general circulation model (GCM) outputs. The reanalysis reflected the general pattern and magnitude of the observed station trends across Australia. However, unlike the station trends, the reanalysis trends are mainly driven by vapor pressure deficit changes than wind speed changes. Some of the GCMs modeled the trends well, but most showed an average positive trend for Australia. Half the GCMs analyzed show increasing wind speed trends, and most show larger changes in vapor pressure deficit than would be expected based on the station data. Future changes to open water body evaporation have also been assessed using projections for two emission scenarios. Averaged across Australia, the models show a 5% increase in open water body evaporation by 2070 compared to 1990 levels. There is considerable variability in the model projections, particularly for the aerodynamic component of evaporation. Assumptions of increases in evaporation in a warming world need to be considered in light of the variability in the parameters that affect evaporation.

Corresponding author address: Ashish Sharma, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia. Email: a.sharma@unsw.edu.au

Abstract

Trends of decreasing pan evaporation around the world have renewed interest in evaporation and its behavior in a warming world. Observed pan evaporation around Australia has been modeled to attribute changes in its constituent variables. It is found that wind speed decreases have generally led to decreases in pan evaporation. Trends were also calculated from reanalysis and general circulation model (GCM) outputs. The reanalysis reflected the general pattern and magnitude of the observed station trends across Australia. However, unlike the station trends, the reanalysis trends are mainly driven by vapor pressure deficit changes than wind speed changes. Some of the GCMs modeled the trends well, but most showed an average positive trend for Australia. Half the GCMs analyzed show increasing wind speed trends, and most show larger changes in vapor pressure deficit than would be expected based on the station data. Future changes to open water body evaporation have also been assessed using projections for two emission scenarios. Averaged across Australia, the models show a 5% increase in open water body evaporation by 2070 compared to 1990 levels. There is considerable variability in the model projections, particularly for the aerodynamic component of evaporation. Assumptions of increases in evaporation in a warming world need to be considered in light of the variability in the parameters that affect evaporation.

Corresponding author address: Ashish Sharma, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia. Email: a.sharma@unsw.edu.au

Save