Scale-Dependent Uncertainties in Global QPFs and QPEs from NWP Model and Satellite Fields

C. Lu CIRA, Colorado State University, Fort Collins, and NOAA/ESRL/Global Systems Division, Boulder, Colorado

Search for other papers by C. Lu in
Current site
Google Scholar
PubMed
Close
,
H. Yuan CIRES, University of Colorado, and NOAA/ESRL/Global Systems Division, Boulder, Colorado

Search for other papers by H. Yuan in
Current site
Google Scholar
PubMed
Close
,
E. I. Tollerud NOAA/ESRL/Global Systems Division, Boulder, Colorado

Search for other papers by E. I. Tollerud in
Current site
Google Scholar
PubMed
Close
, and
N. Wang CIRA, Colorado State University, Fort Collins, and NOAA/ESRL/Global Systems Division, Boulder, Colorado

Search for other papers by N. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global precipitation forecasts from numerical weather prediction (NWP) models can be verified using the near-global coverage of satellite precipitation retrievals. However, inaccuracies in satellite precipitation analyses complicate the interpretation of forecast errors that result from verification of an NWP model against satellite observations. In this study, assessments of both a global quantitative precipitation estimate (QPE) from a satellite precipitation product and corresponding global quantitative precipitation forecast (QPF) from a global NWP model are conducted using available global land-based gauge data. A scale decomposition technique is devised, coupled with seasonal and spatial classifications, to evaluate these inaccuracies. The results are then analyzed in context with various physical precipitation systems, including heavy monsoonal rains, light Mediterranean winter rains, and North American convective-related and midlatitude cyclone–related precipitation.

In general, global model results tend to consistently overforecast rainfall, whereas satellite measurements present a mixed pattern, underestimating many large-scale precipitation systems while overestimating many convective-scale precipitation systems. Both global model QPF and satellite-retrieved QPE showed better correlation scores in large-scale precipitation systems when verified with gauge measurements. In this case, model-based QPF tends to outperform satellite-retrieved QPE. At convective scales, there are significant drops in both model QPF and satellite QPE correlation scores, but satellite QPE performs slightly better than model QPF. These general results also showed regional and seasonal variation. For example, in tropical monsoon systems, satellite QPE tended to outperform model-based QPF at both scales. Overall, the results suggest potential improvements for both satellite estimates and weather forecast systems, in particular as applied to global precipitation forecasts.

Corresponding author address: Chungu Lu, NOAA/ESRL, Colorado State University, Boulder, CO 80305. Email: chungu.lu@noaa.gov

Abstract

Global precipitation forecasts from numerical weather prediction (NWP) models can be verified using the near-global coverage of satellite precipitation retrievals. However, inaccuracies in satellite precipitation analyses complicate the interpretation of forecast errors that result from verification of an NWP model against satellite observations. In this study, assessments of both a global quantitative precipitation estimate (QPE) from a satellite precipitation product and corresponding global quantitative precipitation forecast (QPF) from a global NWP model are conducted using available global land-based gauge data. A scale decomposition technique is devised, coupled with seasonal and spatial classifications, to evaluate these inaccuracies. The results are then analyzed in context with various physical precipitation systems, including heavy monsoonal rains, light Mediterranean winter rains, and North American convective-related and midlatitude cyclone–related precipitation.

In general, global model results tend to consistently overforecast rainfall, whereas satellite measurements present a mixed pattern, underestimating many large-scale precipitation systems while overestimating many convective-scale precipitation systems. Both global model QPF and satellite-retrieved QPE showed better correlation scores in large-scale precipitation systems when verified with gauge measurements. In this case, model-based QPF tends to outperform satellite-retrieved QPE. At convective scales, there are significant drops in both model QPF and satellite QPE correlation scores, but satellite QPE performs slightly better than model QPF. These general results also showed regional and seasonal variation. For example, in tropical monsoon systems, satellite QPE tended to outperform model-based QPF at both scales. Overall, the results suggest potential improvements for both satellite estimates and weather forecast systems, in particular as applied to global precipitation forecasts.

Corresponding author address: Chungu Lu, NOAA/ESRL, Colorado State University, Boulder, CO 80305. Email: chungu.lu@noaa.gov

Save
  • Adler, R. F., Keehn P. R. , and Hakkarinen I. M. , 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor., 32 , 335356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 1993: Closure assumptions in the cumulus parameterization problem. The Representation of Cumulus Convection in Numerical Models of the Atmosphere, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 1–15.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Xie P. , 1994: The Global Precipitation Climatology Project: First Algorithm Intercomparison Project. Bull. Amer. Meteor. Soc., 75 , 401419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, Ch, Grieser J. , and Rundolf B. , 2004: A new monthly precipitation climatology for the global land areas for the period 1951 to 2000 (in Dutch). DWD Rep., Klimastatusbericht 2004, 181–190. [Available online at http://www.dwd.de/en/FundE/Klima/KLIS/int/GPCC/GPCC.htm].

    • Search Google Scholar
    • Export Citation
  • Beylkin, G., and Saito N. , 1992: Wavelets, their autocorrelation functions, and multiresolution representation of signals. Intelligent Robots and Computer Vision XI: Biological Neural Net, and 3D Methods, D. P. Casasent, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 1862), 39–50.

    • Search Google Scholar
    • Export Citation
  • Bousquet, O., Lin C. A. , and Zawadzki I. , 2006: Analysis of scale dependence of quantitative precipitation forecast verification: A case-study over the Mackenzie River basin. Quart. J. Roy. Meteor. Soc., 132 , 21072125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casati, B., Ross G. , and Stephenson D. B. , 2004: A new intensity-scale approach for the verification of spatial precipitation forecasts. Meteor. Appl., 11 , 141154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., Brown B. , and Bullock R. , 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134 , 17721784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., Mullen S. L. , and Sanders F. , 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125 , 24272459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and McBride J. L. , 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239 , 179202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Damrath U. , Wergen W. , and Baldwin M. E. , 2003: The WGNE assessment of short-term quantitative precipitation forecasts. Bull. Amer. Meteor. Soc., 84 , 481492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88 , 4764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J. G., Meng J. , Rodell M. , and Houser P. , 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on global land data assimilation system land surface states. J. Hydrometeor., 6 , 573598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, J. S., and Morrissey M. , 2000: Validation and uncertainty analysis of satellite rainfall algorithms. Prof. Geogr., 52 , 247258.

  • Harris, D., Menabde M. , Seed W. W. , and Austin G. L. , 1996: Multifractal characterization of rain fields with a strong orographic influence. J. Geophys. Res., 101 , 2640526414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, D., Foufoula-Georgiou E. , Droegemeier K. K. , and Levit J. J. , 2001: Multifractal statistical properties of a high-resolution precipitation forecast. J. Hydrometeor., 2 , 406418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, D. D., Petersen R. A. , and Wobus R. L. , 1993: Spatial resolution impacts on National Meteorological Center nested grid model simulations. Mon. Wea. Rev., 121 , 14501466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., Gao X. , Sorooshian S. , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36 , 11761190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Morrisey M. M. , Bolvin D. T. , Curtine S. , Joyce R. , McGavock B. , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, S., Schemm J. E. , Barnston A. G. , and Kwon W. , 2001: Long-lead seasonal forecast skill in far eastern Asia using canonical correlation analysis. J. Climate, 14 , 30053016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., 1989: Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting, 4 , 335342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirby, J. F., 2005: Which wavelet best reproduces the Fourier power spectrum? Comput. Geosci., 31 , 846864.

  • Kronland-Martinet, R., Morlet J. , and Grossman A. , 1987: Analysis of sound patterns through wavelet transforms. J. Pattern Recognit. Artif. Intell., 1 , 273302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C., Koch S. , and Wang N. , 2005: Determination of temporal and spatial characteristics of gravity waves using cross-spectral analysis and wavelet transformation. J. Geophys. Res., 110 , D01109. doi:10.1029/2004JD004906.

    • Search Google Scholar
    • Export Citation
  • Meyers, S. D., Kelly B. G. , and O’Brien J. J. , 1993: An introduction to wavelet analysis in oceanography and meteorology: With application to the dispersion of Yanai waves. Mon. Wea. Rev., 121 , 28582866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and Dudek M. , 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., and Buizza R. , 2001: Quantitative precipitation forecast over the United States by the ECMWF ensemble prediction system. Mon. Wea. Rev., 129 , 638663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP, 2003: The GFS Atmospheric Model. NCEP Office Note 442, 14 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on442.pdf].

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 1984: Mesoscale Meteorological Modeling. Academic Press, 612 pp.

  • Raymond, D. J., 1993: Observational constraints on cumulus parameterizations. The Representation of Cumulus Convection in Numerical Models of the Atmosphere, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 17–28.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., Fritsch J. M. , and Lambert W. C. , 2000: A simple technique for using radar in the dynamic initialization of a mesoscale model. Mon. Wea. Rev., 128 , 25602574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1986: Trends in skill of daily forecasts of temperature and precipitation, 1966–78. Bull. Amer. Meteor. Soc., 67 , 763769.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., Fuchs T. , Meyer-Christoffer A. , and Rudolf B. , 2008: Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre Rep., 12 pp. [Available online at http://gpcc.dwd.de].

    • Search Google Scholar
    • Export Citation
  • Skoien, J. O., Blöschl G. , and Western A. W. , 2003: Characteristic space scales and timescales in hydrology. Water Resour. Res., 39 , 1304. doi:10.1029/2002WR001736.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K-L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Zou X. , and Kuo Y-H. , 2000: Incorporating the SSM/I-derived precipitable water and rainfall rate into a numerical model: A case study for the ERICA IOP-4 cyclone. Mon. Wea. Rev., 128 , 87108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., Janowaik J. E. , Arkin P. A. , Adler R. F. , Gruber A. , Ferraro R. , Huffman G. J. , and Curtis S. , 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16 , 21972214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, H., Lu C. , McGinley J. , Shultz P. , Jamison B. , Wharton L. , and Anderson C. , 2009: Evaluation of short-range quantitative precipitation forecasts from a time-lagged multimodel ensemble. Wea. Forecasting, 24 , 1838.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 903 721 33
PDF Downloads 125 23 0