• Benson, B., , and Magnuson J. , 2007: Global lake and river ice phenology database. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/g01377.html].

    • Search Google Scholar
    • Export Citation
  • Berry, P. A. M., , Bron E. , , Sanders R. F. , , and Leenmans C. , 1998: Use of ERS-1 land altimetry to validate the GLOBE global digital elevation model. Geodesy on the Move: Gravity, Geoid, Geodynamics and Antarctica, R. Forsberg, M. Feissl, and R. Deitrich, Eds., International Association of Geodesy Symposia Series, Vol. 119, Springer, 119–124.

    • Search Google Scholar
    • Export Citation
  • Bigras, S. C., 1990: Hydrological regime of lakes in the Mackenzie delta, Northwest Territories, Canada. Arct. Alp. Res., 22 , 163174.

  • Bowling, L. C., , Kane D. L. , , Gieck R. E. , , Hinzman L. D. , , and Lettenmaier D. P. , 2003a: The role of surface storage in a low-gradient Arctic watershed. Water Resour. Res., 39 , 1087. doi:10.1029/2002WR001466.

    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and Coauthors, 2003b: Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e): 1: Experiment description and summary intercomparisons. Global Planet. Change, 38 , 130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., , Pomeroy J. W. , , and Lettenmaier D. P. , 2004: Parameterization of blowing snow sublimation in a macroscale hydrology model. J. Hydrometeor., 5 , 745762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattle, H., 1985: Diverting Soviet rivers: Some possible repercussions for the Arctic Ocean. Polar Rec., 22 , 485498.

  • Cherkauer, K. A., , and Lettenmaier D. P. , 1999: Hydrologic effects of frozen soils in the Upper Mississippi River basin. J. Geophys. Res., 104 , 1959919610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., , Bowling L. C. , , and Lettenmaier D. P. , 2003: Variable Infiltration Capacity (VIC) Cold Land Process Model Updates. Global Planet. Change, 38 , 151159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emmerton, C. A., , Lesack L. F. W. , , and Marsh P. , 2007: Lake abundance, potential water storage, and habitat distribution in the Mackenzie River Delta, western Canadian Arctic. Water Resour. Res., 43 , W05419. doi:10.1029/2006WR005139.

    • Search Google Scholar
    • Export Citation
  • Frohn, R. C., , Hinkel K. M. , , and Eisner W. R. , 2005: Satellite remote sensing classification of thaw lakes and drained thaw lake basins on the North Slope of Alaska. Remote Sens. Environ., 97 , 116126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glenn, M. S., , and Woo M-K. , 1997: Spring and summer hydrology of a valley-bottom wetland, Ellesmere Island, Northwest Territories, Canada. Wetlands, 17 , 321329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goyette, S., , McFarlane N. A. , , and Flato G. M. , 2000: Application of the Canadian Regional Climate Model to the Laurentian Great Lakes region: Implementation of a lake model. Atmos.–Ocean, 38 , 481503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grippa, M., , Mognard N. M. , , LeToan T. , , and Biancamaria S. , 2007: Observations of changes in surface water over the western Siberia lowland. Geophys. Res. Lett., 34 , L15403. doi:10.1029/2007GL030165.

    • Search Google Scholar
    • Export Citation
  • Hamill, L., 2001: Understanding Hydraulics. 2nd ed. Palgrave, 632 pp.

  • Henderson-Sellers, B., 1985: New formulation of eddy diffusion thermocline models. Appl. Math. Modell., 9 , 441446.

  • Hostetler, S. W., 1991: Simulation of lake ice and its effect on the late-Pleistocene evaporation rate of Lake Lahontan. Climate Dyn., 6 , 4348.

  • Hostetler, S. W., , and Bartlein P. J. , 1990: Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resour. Res., 26 , 26032612.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., , Bartlein P. J. , , Clarke P. U. , , Small E. E. , , and Soloman A. M. , 2000: Simulated influences of Lake Agassiz on the climate of central North America 11,000 years ago. Nature, 405 , 334337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffries, M. O., , Morris K. , , and Liston G. E. , 1996: A method to determine lake depth and water availability in the north slope of Alaska with spaceborne imaging radar and numerical ice growth modelling. Arctic, 49 , 367374.

    • Search Google Scholar
    • Export Citation
  • Jeffries, M. O., , Zhang T. , , Frey K. , , and Kozlenko N. , 1999: Estimating late-winter heat flow to the atmosphere from the lake-dominated Alaskan North Slope. J. Glaciol., 45 , 315324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kane, D. L., , and Hinzman L. D. , 2003: Meteorological and hydrographic data, Kuparuk River watershed. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/arcss015.html].

    • Search Google Scholar
    • Export Citation
  • Korzun, V. I., and Coauthors, Eds. 1978: World Water Balance and Water Resources of the Earth. Studies and Reports in Hydrology, Vol. 25, UNESCO, 663 pp.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Lettenmaier D. P. , , Wood E. F. , , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 , 415428.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., , Raschke E. , , Nijssen B. , , and Lettenmaier D. P. , 1998a: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43 , 131141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, D., , Raschke E. , , Nijssen B. , , and Lettenmaier D. P. , 1998b: Regional scale hydrology: II. Application of the VIC-2L model to the Weser River, Germany. Hydrol. Sci. J., 43 , 143157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, P., , and Bigras S. C. , 1988: Evaporation from Mackenzie Delta Lakes, N.W.T., Canada. Arct. Alp. Res., 20 , 220229.

  • Marsh, P., , Russel M. , , Pohl S. , , Haywood H. , , and Onlcin C. , 2009: Changes in thaw lake drainage in the Western Canadian Arctic from 1950 to 2000. Hydrol. Processes, 23 , 145158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , Wood A. W. , , Adam J. C. , , Lettenmaier D. P. , , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendez, J., , Hinzman L. D. , , and Kane D. L. , 1998: Evapotranspiration from a wetland complex on the Arctic coastal plain of Alaska. Nord. Hydrol., 29 , 303330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moskvin, Y. P., 1989: Runoff from hummocky marshes of western Siberia. Sov. Meteor. Hydrol., 3 , 8894.

  • Muller, S. V., , Racoviteanu A. E. , , and Walker D. A. , 1999: Landsat-MSS-derived land-cover map of northern Alaska: Extrapolation methods and comparison with photo-interpreted and AVHRR-derived maps. Int. J. Remote Sens., 20 , 29212946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., , and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I — A discussion of principles. J. Hydrol., 10 , 282290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , Lettenmaier D. P. , , Liang X. , , Wetzel S. W. , , and Wood E. F. , 1997: Streamflow simulation for continental-scale river basins. Water Resour. Res., 33 , 711724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , Schnur R. , , and Lettenmaier D. P. , 2001: Global retrospective estimation of soil moisture using the Variable Infiltration Capacity land surface model, 1980–93. J. Climate, 14 , 17901808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patterson, J. C., , and Hamblin P. F. , 1988: Thermal simulation of a lake with winter ice cover. Limnol. Oceanogr., 33 , 323338.

  • Roulet, N. T., , and Woo M. K. , 1986: Wetland and lake evaporation in the low Arctic. Arct. Alp. Res., 18 , 195200.

  • Rouse, W. R., , Blanken P. D. , , Duguay C. R. , , Oswald C. J. , , and Schertzer W. M. , 2007: Climate-lake interactions. Hydrologic Processes, M.-K. Woo, Ed., Vol. 2, Cold Region Atmospheric and Hydrologic Studies: The Mackenzie GEWEX Experience, Springer, 139–160.

    • Search Google Scholar
    • Export Citation
  • Rovansek, R. J., , Hinzman L. D. , , and Kane D. L. , 1996: Hydrology of a tundra wetland complex in the Alaskan Arctic coastal plain, U.S.A. Arct. Alp. Res., 28 , 311317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, L. C., , Sheng Y. , , MacDonald G. M. , , and Hinzman L. D. , 2005: Disappearing Arctic Lakes. Science, 308 , 1429.

  • Smith, L. C., , Sheng Y. , , and MacDonald G. M. , 2007: A first pan-arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution. Permafrost Periglac. Processes, 18 , 201208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, C., 2006: Hydrological processes and streamflow in a lake dominated water course. Hydrol. Processes, 20 , 36653681.

  • Spence, C., , and Woo M-K. , 2003: Hydrology of subarctic Canadian Shield: Soil-filled valleys. J. Hydrol., 279 , 151166.

  • Spence, C., , and Woo M-K. , 2006: Hydrology of subarctic Canadian Shield: Heterogeneous headwater basins. J. Hydrol., 317 , 138154.

  • Sun, S., , Jin J. , , and Xue Y. , 1999: A simple snow-atmosphere-soil transfer model. J. Geophys. Res., 104 , (D16). 1958719597.

  • Thornton, P. E., , and Running S. W. , 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity and precipitation. Agric. For. Meteor., 93 , 211228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuglinsky, V. S., 1997: River water inflow to the Arctic Ocean—Condition of formation, time variability and forecasts. Proc. ACSYS Conf. on Polar Processes and Global Climate, Rosario, Orcas Island, WA, WCRP, WCRP 106, WMO/TD 908, 275–276.

    • Search Google Scholar
    • Export Citation
  • Woo, M. K., , and Xia Z. , 1996: Effects of hydrology on the thermal conditions of the active layer. Nord. Hydrol., 27 , 129142.

  • Young, K. L., , and Woo M-K. , 2000: Hydrological response of a patchy high Arctic wetland. Nord. Hydrol., 31 , 317338.

  • Zhu, C. M., , Leung L. R. , , Gochis D. , , Qian Y. , , and Lettenmaier D. P. , 2009: Evaluating the influence of antecedent soil moisture on variability of the North American Monsoon precipitation in the coupled MM5/VIC modeling system. J. Adv. Model. Earth Syst., 1 .doi:10.3894/JAMES.2009.1.13.

    • Search Google Scholar
    • Export Citation
  • Zoltai, S. C., 1979: An outline of the wetland regions of Canada. Proceedings of a Workshop on Canadian Wetlands, C. D. A. Rubec and F. C. Pollett, Eds., Ecological Land Classification Series, Vol. 12, Environment Canada, Lands Directorate, 1–8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 207 207 54
PDF Downloads 183 183 51

Modeling the Effects of Lakes and Wetlands on the Water Balance of Arctic Environments

View More View Less
  • 1 Department of Agronomy, Purdue University, West Lafayette, Indiana
  • | 2 Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Lakes, ponds, and wetlands are common features in many low-gradient arctic watersheds. Storage of snowmelt runoff in lakes and wetlands exerts a strong influence on both the interannual and interseasonal variability of northern rivers. This influence is often not well represented in hydrology models and the land surface schemes used in climate models. In this paper, an algorithm to represent the evaporation and storage effects of lakes and wetlands within the Variable Infiltration Capacity (VIC) macroscale hydrology model is described. The model is evaluated with respect to its ability to represent water temperatures, net radiation, ice freeze–thaw, and runoff production for a variety of high-latitude locations. It is then used to investigate the influence of surface storage on the spatial and temporal distribution of water and energy fluxes for the Kuparuk and Putuligayuk Rivers, on the Alaskan arctic coastal plain. Inclusion of the lake and wetland algorithm results in a substantial improvement of the simulated streamflow hydrographs, as measured using the monthly Nash–Sutcliffe efficiency. Simulations of runoff from the Putuligayuk watershed indicate that up to 80% of snow meltwater goes into storage each year and does not contribute to streamflow. Approximately 46% of the variance in the volume of snowmelt entering storage can be explained by the year-to-year variation in maximum snow water equivalent and the lake storage deficit from the previous summer. The simulated summer lake storage deficit is much lower than the cumulative precipitation minus lake evaporation (−47 mm, on average) as a result of simulated recharge from the surrounding uplands.

Corresponding author address: Laura Bowling, Purdue University, Lilly Hall of Life Sciences, 915 W. State St., West Lafayette, IN 47907-2054. Email: bowling@purdue.edu

Abstract

Lakes, ponds, and wetlands are common features in many low-gradient arctic watersheds. Storage of snowmelt runoff in lakes and wetlands exerts a strong influence on both the interannual and interseasonal variability of northern rivers. This influence is often not well represented in hydrology models and the land surface schemes used in climate models. In this paper, an algorithm to represent the evaporation and storage effects of lakes and wetlands within the Variable Infiltration Capacity (VIC) macroscale hydrology model is described. The model is evaluated with respect to its ability to represent water temperatures, net radiation, ice freeze–thaw, and runoff production for a variety of high-latitude locations. It is then used to investigate the influence of surface storage on the spatial and temporal distribution of water and energy fluxes for the Kuparuk and Putuligayuk Rivers, on the Alaskan arctic coastal plain. Inclusion of the lake and wetland algorithm results in a substantial improvement of the simulated streamflow hydrographs, as measured using the monthly Nash–Sutcliffe efficiency. Simulations of runoff from the Putuligayuk watershed indicate that up to 80% of snow meltwater goes into storage each year and does not contribute to streamflow. Approximately 46% of the variance in the volume of snowmelt entering storage can be explained by the year-to-year variation in maximum snow water equivalent and the lake storage deficit from the previous summer. The simulated summer lake storage deficit is much lower than the cumulative precipitation minus lake evaporation (−47 mm, on average) as a result of simulated recharge from the surrounding uplands.

Corresponding author address: Laura Bowling, Purdue University, Lilly Hall of Life Sciences, 915 W. State St., West Lafayette, IN 47907-2054. Email: bowling@purdue.edu

Save