• Abdulla, F. A., , Lettenmaier D. P. , , and Liang X. , 1999: Estimation of the ARNO model baseflow parameters using daily streamflow data. J. Hydrol., 222 , 3754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alley, R. B., and Coauthors, 2007: Summary for policymakers. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 18 pp.

    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and Coauthors, 2003a: Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e) 1: Experiment description and summary intercomparisons. Global Planet. Change, 38 , 130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowling, L. C., and Coauthors, 2003b: Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e) 3: Equivalent model representation and sensitivity experiments. Global Planet. Change, 38 , 5571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bras, R. A., 1990: An Introduction to Hydrologic Science. Addison-Wesley, 643 pp.

  • Cherkauer, K. A., , and Lettenmaier D. P. , 1999: Hydrologic effects of frozen soils in the upper Mississippi River basin. J. Geophys. Res., 104 , 1959919610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., , and Lettenmaier D. P. , 2003: Simulation of spatial variability in snow and frozen soil. J. Geophys. Res., 108 , 8858. doi:10.1029/2003JD003575.

    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., , Bowling L. C. , , and Lettenmaier D. P. , 2003: Variable infiltration capacity cold land process model updates. Global Planet. Change, 38 , 151159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooter, E. J., , and Leduc S. K. , 1995: Recent frost date trends in the north-eastern USA. Int. J. Climatol., 15 , 6575.

  • Dye, D. G., , and Tucker C. J. , 2003: Seasonality and trends of snow-cover, vegetation index, and temperature in northern Eurasia. Geophys. Res. Lett., 30 , 1405. doi:10.1029/2002GL016384.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., 2002: Recent changes in frost days and the frost-free season in the United States. Bull. Amer. Meteor. Soc., 83 , 13271332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., , and Karl T. R. , 2001: Potential consequences of climate variability and change for the midwestern United States. Climate change impacts on the United States: The potential consequences of climate variability and change, National Assessment Synthesis Team Foundation Rep., 167–188.

    • Search Google Scholar
    • Export Citation
  • Fassnacht, S. R., , and Soulis E. D. , 2002: Implications during transitional periods of improvements to the snow processes in the Land Surface Scheme—Hydrological model WATCLASS. Atmos.–Ocean, 40 , 389403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauenfeld, O. W., , Zhang T. , , and McCreight J. L. , 2007: Northern hemisphere freezing/thawing index variations over the twentieth century. Int. J. Climatol., 27 , 4763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaile, G. L., , and Willmott C. J. , 1984: On the evaluation of model performance in physical geography. Spatial Statistics and Models, Kluwer, 443–460.

    • Search Google Scholar
    • Export Citation
  • Hamed, K. H., , and Rao A. R. , 1998: A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol., 204 , 182196.

  • Hamlet, A. F., , and Lettenmaier D. P. , 2005: Production of temporally consistent gridded precipitation and temperature fields for the continental United States. J. Hydrometeor., 6 , 330336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., , Defries R. S. , , Townsheed J. R. G. , , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21 , 13311364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, J. P., and Coauthors, 2001: Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry, 56 , 151174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haugen, R., , and King G. , 1998: Seasonal frost depths, midwestern USA. Circumpolar Active-Layer Permafrost System (CAPS), version 1.0. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/ggd498.html].

    • Search Google Scholar
    • Export Citation
  • Hirsch, R. M., , Helsel D. R. , , Cohn T. A. , , and Gilroy E. J. , 1992: Statistical treatment of hydrologic data. Handbook of Hydrology, D. R. Maidment, Ed., McGraw-Hill, 17.1–17.55.

    • Search Google Scholar
    • Export Citation
  • Hodgkins, G. A., , and Dudley R. W. , 2006: Changes in late-winter snowpack depth, water equivalent, and density in Maine, 1926-2004. Hydrol. Processes, 20 , 741751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM.89. U.S. Army Corps of Engineers, CRREL Special Rep. 91-16, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kling, G. W., and Coauthors, 2003: Confronting Climate Change in the Great Lakes Regions: Impacts on our Communities and Ecosystems. The Union of Concerned Scientists and the Ecological Society of America Rep., 92 pp.

    • Search Google Scholar
    • Export Citation
  • Krause, P., , Boyle D. P. , , and Base F. , 2005: Comparison of different efficiency criteria for hydrologic model assessment. Adv. Geosci., 5 , 8997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and Coauthors, 1998: An expanded digital daily database for climatic resources applications in the midwestern United States. Bull. Amer. Meteor. Soc., 79 , 13571366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., , Easterling D. R. , , Hubbard K. , , and Redmond K. , 2004: Temporal variations in frost-free season in the United States: 1895–2000. Geophys. Res. Lett., 31 , L03201. doi:10.1029/2003GL018624.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., , and McCabe G. J. Jr., 1999: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35 , 233241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemke, P., and Coauthors, 2007: Observations: Changes in snow, ice and frozen ground. Climate Change 2007: The Physical Science Basis, S. Solomon et al. Eds., Cambridge University Press, 337–384.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Lettenmaier D. P. , , Wood E. F. , , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 , 1441514428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., , Lettenmaier D. P. , , and Wood E. F. , 1996: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res., 101 , 2140321422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, D., , Raschke E. , , Nijssen B. , , and Lettenmaier D. P. , 1998a: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43 , 131142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, D., , Raschke E. , , Nijssen B. , , and Lettenmaier D. P. , 1998b: Regional scale hydrology: II. Application of the VIC-2L model to the Weser River, Germany. Hydrol. Sci. J., 43 , 143158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, D., , and Cherkauer K. A. , 2009: Impacts of land-use change on hydrologic responses in the Great Lakes region. J. Hydrol., 374 , 7182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , Wood A. W. , , Adam J. C. , , Lettenmaier D. P. , , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous Unites States. J. Climate, 15 , 32373251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. A., , and White R. A. , 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interactions, 2 .[Available online at http://EarthInteractions.org].

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrologic modeling system. J. Geophys. Res., 109 , 132.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., , Hamlet A. F. , , Clark M. P. , , and Lettenmaier D. P. , 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86 , 3949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., , Nemani R. R. , , and Running S. W. , 1997: Estimation of global Leaf Area Index and absorbed par using radiative transfer models. IEEE Trans. Geosci. Remote Sens., 35 , 13801393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., , and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10 , 282290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , O’Donnell G. M. , , Lettenmaier D. P. , , Lohmann D. , , and Wood E. F. , 2001a: Predicting the discharge of global rivers. J. Climate, 14 , 33073323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , Schnur R. , , and Lettenmaier D. P. , 2001b: Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. J. Climate, 14 , 17901808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikol’skii, A. A., , Roshchina E. E. , , and Soroka O. V. , 2002: Snow cover as a factor of winter ecology of small mammals in the steppes zone. Dokl. Biol. Sci., 383 , 158160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, A. R., , Hamed K. H. , , and Chen H-L. , 2003: Time domain analysis. Nonstationarities in Hydrologic and Environmental Time Series, Kluwer Academic Publishers, 27–54.

    • Search Google Scholar
    • Export Citation
  • Schaal, L. A., , Newman J. E. , , and Scheeringa K. A. , 1981: Climatology of soil temperatures in Indiana. Department of Agronomy, Agricultural Experiment Station, Purdue University, Station Bulletin 307, 87 pp.

    • Search Google Scholar
    • Export Citation
  • Sinha, T., , and Cherkauer K. A. , 2008: Time series analysis of freeze and thaw processes in Indiana. J. Hydrometeor., 9 , 936950.

  • Stewart, I. T., , Cayan D. R. , , and Dettinger M. D. , 2005: Changes toward earlier streamflow timing across western North America. J. Climate, 18 , 11361155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storck, P., , and Lettenmaier D. P. , 1999: Predicting the effect of a forest canopy on ground snow pack accumulation and ablation in maritime climates. Proc. 67th Western Snow Conf., South Lake Tahoe, CA, Western Snow Conference, 1–12.

    • Search Google Scholar
    • Export Citation
  • U.S. Department of Commerce, 1966–1982: Indiana, Michigan, Illinois, Iowa, Minnesota, Wisconsin: Climatological Data, Vols. 71–87, Environmental Data and Information Service, National Climatic Data Center.

  • WARM, cited. 2008: Illinois State Water Survey. [Available online at http://www.isws.illinois.edu/warm/datatype.asp].

  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2 , 184194.

  • WMO, 2006: Statement on the status of the global climate. WMO Rep. 998, 12 pp. [Available online at http://www.wmo.ch/index-en.html].

  • Wood, E. F., , Lettenmaier D. P. , , Liang X. , , Nijssen B. , , and Wetzel S. W. , 1997: Hydrologic modeling of continental-scale basins. Annu. Rev. Earth Planet. Sci., 25 , 279300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., 2005: Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys., 43 , RG4002. doi:10.1029/2004RG000157.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , Barry R. G. , , Gilichinsky D. , , Bykhovets S. S. , , Sorokovikov V. A. , , and Ye J. , 2001: An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia. Climatic Change, 49 , 4176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., , Serreze M. , , Barry R. G. , , Gilichinsky D. , , and Etringer A. , 2003: Climate change: Evidence from Russian historical soil temperature measurements. Geophysical Research Abstracts, Vol. 5, Abstract 1485. [Available online at http://www.cosis.net/abstracts/EAE03/01485/EAE03-J-01485.pdf].

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 2
PDF Downloads 32 32 2

Impacts of Historic Climate Variability on Seasonal Soil Frost in the Midwestern United States

View More View Less
  • 1 School of Life Sciences, Arizona State University, Tempe, Arizona
  • | 2 Agricultural and Biological Engineering Department, Purdue University, West Lafayette, Indiana
© Get Permissions
Restricted access

Abstract

The present study examines the effects of historic climate variability on cold-season processes, including soil temperature, frost depth, and the number of frost days and freeze–thaw cycles. Considering the importance of spatial and temporal variability in cold-season processes, the study was conducted in the midwestern United States using both observations and model simulations. Model simulations used the Variable Infiltration Capacity (VIC) land surface model (LSM) to reconstruct and to analyze changes in the long-term (i.e., 1917–2006) means of soil frost variables. The VIC model was calibrated using observed streamflow records and near-surface soil temperatures and then evaluated for streamflow, soil temperature, frost depth, and soil moisture before its application at the regional scale. Soil frost indicators—such as the number of frost days and freeze–thaw cycles—were determined from observed records and were tested for the presence of significant trends. Overall trends in extreme and mean seasonal soil temperature from 1967 onward indicated a warming of soil temperatures at a depth of 10 cm—specifically in northwest Indiana, north-central Illinois, and southeast Minnesota—leading to a reduction in the number of soil frost days. Model simulations indicated that by the late-century period (1977–2006), soil frost duration decreased by as much as 36 days compared to the midcentury period (1947–76). Spatial averages for the study area in warm years indicated shallower frost penetration by 15 cm and greater soil temperatures by about 3°C at 10-cm soil depth than in the cold years.

Corresponding author address: Tushar Sinha, School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ 85287-4501. Email: tsinha4@asu.edu

Abstract

The present study examines the effects of historic climate variability on cold-season processes, including soil temperature, frost depth, and the number of frost days and freeze–thaw cycles. Considering the importance of spatial and temporal variability in cold-season processes, the study was conducted in the midwestern United States using both observations and model simulations. Model simulations used the Variable Infiltration Capacity (VIC) land surface model (LSM) to reconstruct and to analyze changes in the long-term (i.e., 1917–2006) means of soil frost variables. The VIC model was calibrated using observed streamflow records and near-surface soil temperatures and then evaluated for streamflow, soil temperature, frost depth, and soil moisture before its application at the regional scale. Soil frost indicators—such as the number of frost days and freeze–thaw cycles—were determined from observed records and were tested for the presence of significant trends. Overall trends in extreme and mean seasonal soil temperature from 1967 onward indicated a warming of soil temperatures at a depth of 10 cm—specifically in northwest Indiana, north-central Illinois, and southeast Minnesota—leading to a reduction in the number of soil frost days. Model simulations indicated that by the late-century period (1977–2006), soil frost duration decreased by as much as 36 days compared to the midcentury period (1947–76). Spatial averages for the study area in warm years indicated shallower frost penetration by 15 cm and greater soil temperatures by about 3°C at 10-cm soil depth than in the cold years.

Corresponding author address: Tushar Sinha, School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ 85287-4501. Email: tsinha4@asu.edu

Save