• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., , and Soden B. J. , 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321 , 14811484.

  • Barros, A. P., , and Evans J. L. , 1997: Designing for climate variability. J. Prof. Issues Eng. Educ. Pract., 123 , 6265.

  • Barros, A. P., , and Tao K. , 2008: A space-filling algorithm to extrapolate narrow-swath instantaneous TRMM microwave rain-rate estimates using thermal IR imagery. J. Atmos. Oceanic Technol., 25 , 19011920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernardara, P., , Schertzer D. , , Sauquet E. , , Tchiguirinskaia I. , , and Lang M. , 2008: The flood probability distribution tail: How heavy is it? Stochastic Environ. Res. Risk Assess., 22 , 107122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindlish, R., , and Barros A. P. , 1996: Aggregation of digital terrain data using a modified fractal interpolation scheme. Comput. Geosci., 22 , 907917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boufadel, M. C., , Lu S. , , Molz F. J. , , and Lavallée D. , 2000: Multifractal scaling of the intrinsic permeability. Water Resour. Res., 36 , 32113222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., , Lavallée D. , , and Jones C. , 2002: Multifractal properties of evolving convective systems over tropical South America. Geophys. Res. Lett., 29 , 1743. doi:10.1029/2001GL014276.

    • Search Google Scholar
    • Export Citation
  • Chen, C. T., , and Knutson T. , 2008: On the verification and comparison of extreme rainfall indices from climate models. J. Climate, 21 , 16051621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowpertwait, P. S. P., 1995: A generalized spatial-temporal model of rainfall based on a clustered point process. Proc. Roy. Soc. London, A450 , 163175.

    • Search Google Scholar
    • Export Citation
  • Cowpertwait, P. S. P., 1998: A Poisson-cluster model of rainfall: High-order moments and extreme values. Proc. Roy. Soc. London, A454 , 885898.

    • Search Google Scholar
    • Export Citation
  • Davis, A., , Marshak A. , , Wiscombe W. , , and Cahalan R. , 1994: Multifractal characterizations of nonstationarity and intermittency in geophysical fields: Observed, retrieved, or simulated. J. Geophys. Res., 99 , 80558072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lima, M. I. P., , and Grasman J. , 1999: Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal. J. Hydrol., 220 , 111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dooge, J. C. I., 1986: Looking for hydrologic laws. Water Resour. Res., 22 , 46S58S.

  • Douglas, E. M., , and Barros A. P. , 2003: Probable maximum precipitation estimation using multifractals: Applications to the eastern United States. J. Hydrometeor., 4 , 10121024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., , Evans J. L. , , Groisman P. Ya , , Karl T. R. , , Kunkel K. E. , , and Ambenje P. , 2000: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81 , 417425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., , Vörösmarty C. J. , , Roads J. O. , , and Willmott C. J. , 2004: Uncertainties in precipitation and their impacts on runoff estimates. J. Climate, 17 , 294304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., , and Larnder C. , 1993: Scaling regimes of rainfall time series. Tellus, 45A , 289298.

  • Frisch, U., , and Parisi G. , 1985: Fully developed turbulence and intermittency. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, R. Benzi, and G. Parisi, Eds., Elsevier, 84–88.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, , Knight R. W. , , Karl T. R. , , Easterling D. R. , , Sun B. , , and Lawrimore J. H. , 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5 , 6485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, , Knight R. W. , , Easterling D. R. , , Karl T. R. , , Hegerl G. C. , , and Razuvaev V. N. , 2005: Trends in intense precipitation in the climate record. J. Climate, 18 , 13261350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, D., , Seed A. , , Menabde M. , , and Austin G. , 1997: Factors affecting multiscaling analysis of rainfall time series. Nonlinear Processes Geophys., 4 , 137155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., , Karl T. R. , , Allen M. , , Bindoff N. L. , , Gillett N. , , Karoly D. , , Zhang X. , , and Zwiers F. , 2006: Climate change detection and attribution: Beyond mean temperature signals. J. Climate, 19 , 50585077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubert, P., and Coauthors, 1993: Multifractals and extreme rainfall events. Geophys. Res. Lett., 20 , 931934.

  • Huffman, G. J., 1997: Estimates of root-mean-square random error for finite samples of estimated precipitation. J. Appl. Meteor., 36 , 11911201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , Adler R. F. , , Morrissey M. M. , , Bolvin D. T. , , Curtis S. , , Joyce R. , , McGavock B. , , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. G., 2006: Climatological extremes of simulated annual mean rainfall. J. Climate, 19 , 52895303.

  • Kavvas, L., , and Delleur J. W. , 1975: The stochastic and chronological structure of rainfall sequences: Application to Indiana. Purdue University, Water Resources Research Center Rep. 57, 199 pp.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., , and Zwiers F. W. , 2002: Climate predictions with multimodel ensembles. J. Climate, 15 , 793799.

  • Kim, G., , and Barros A. P. , 2002: Downscaling of remotely-sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data. Remote Sens. Environ., 83 , 400413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., , and Barros A. P. , 1998: Using artificial neural networks to estimate missing rainfall data. J. Amer. Water Resour. Assoc., 34 , 14371447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., , and Barros A. P. , 2001: Blending multiresolution satellite data with application to the initialization of an orographic precipitation model. J. Appl. Meteor., 40 , 15921606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavallée, D., 1991: Multifractal analysis and simulation technique and turbulent fields. Ph.D. thesis, McGill University, 133 pp.

  • Lavallée, D., , Lovejoy S. , , and Schertzer D. , 1991a: On the determination of the codimension function. Non-Linear Variability in Geophysics: Scaling and Fractals, D. Schertzer and S. Lovejoy, Eds., Kluwer Academic, 99–109.

    • Search Google Scholar
    • Export Citation
  • Lavallée, D., , Lovejoy S. , , and Schertzer D. , 1991b: Universal multifractal theory and observations of land and ocean surfaces, and of clouds. Wave Propagation and Scattering in Varied Media II, V. K. Varadan, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 1558), 60–75.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., , and Schertzer D. , 1995: Multifractals and rain. New Uncertainty Concepts in Hydrology and Water Resources, Z. W. Kunzewicz, Ed., Cambridge University Press, 62–103.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., , and Schertzer D. , 2009a: On the simulation of continuous in scale universal multifractals, Part I: Spatially continuous processes. Comput. Geosci., in press.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., , and Schertzer D. , 2009b: On the simulation of continuous in scale universal multifractals, Part II: Space-time processes and finite size corrections. Comput. Geosci., in press.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., , Schertzer D. , , and Tchigirinskaya Y. , 2007: Scaling and extremes in precipitation and streamflow. Eos, Trans. Amer. Geophys. Union, Abstract H41A-06.

    • Search Google Scholar
    • Export Citation
  • Mandelbrot, B. B., 1974: Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech., 62 , 331350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Milly, P. C. D., , Wetherald R. T. , , Dunne K. A. , , and Delworth T. L. , 2002: Increasing risk of great floods in a changing climate. Nature, 415 , 514517.

  • Novikov, E. A., , and Stewart R. , 1964: Intermittency of turbulence and spectrum of fluctuations in energy-dissipation. Izv. Akad. Nauk. SSSR., Ser. Geofiz., 3 , 408412.

    • Search Google Scholar
    • Export Citation
  • Olsson, J., 1995: Limits and characteristics of the multifractal behavior of a high-resolution rainfall time series. Nonlinear Processes Geophys., 2 , 2329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , and Räisänen J. , 2002: Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature, 415 , 512514.

  • Perkins, S. E., , Pitman A. J. , , Holbrook N. J. , , and McAneney J. , 2007: Evaluation of the AR4 climate model’s simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20 , 43564376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Royer, J. F., , Biaou A. , , Chauvin F. , , Schertzer D. , , and Lovejoy S. , 2008: Multifractal analysis of the evolution of simulated precipitation over France in a climate scenario. C. R. Geosci., 340 , 431440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salvadori, G., , Schertzer D. , , and Lovejoy S. , 2001: Multifractal objective analysis: Condition and interpolation. Stochastic Environ. Res. Risk Assess., 15 , 261283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schertzer, D., , and Lovejoy S. , 1987: Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J. Geophys. Res., 92 , 96939714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schertzer, D., , and Lovejoy S. , 1989: Nonlinear variability in geophysics: Multifractal analysis and simulation. Fractals’ Physical Origin and Properties, L. Pietronero, Ed., Ettore Majorana International Science Series, Vol. 45, Plenum Press, 49–79.

    • Search Google Scholar
    • Export Citation
  • Schertzer, D., , and Lovejoy S. , 1992: Hard and soft multifractal processes. Physica A, 185 , 187194.

  • Schertzer, D., , Lovejoy S. , , and Lavallée D. , 1993: Generic multifractal phase transitions and self-organized criticality. Cellular Automata: Prospects in Astrophysical Applications, J. M. Perdang and A. Lejeune, Eds., World Scientific, 216–227.

    • Search Google Scholar
    • Export Citation
  • Schnur, R., 2002: Climate science: The investment forecast. Nature, 415 , 483484.

  • Seuront, L., , Schmitt F. , , Lagadeuc Y. , , Schertzer D. , , and Lovejoy S. , 1999: Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: Example of phytoplankton distribution in turbulent coastal waters. J. Plankton Res., 21 , 877922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. L., cited. 2008: Climate extremes and global warming: A statistician’s perspective. [Available online at http://apha.confex.com/apha/136am/webprogram/Paper189287.html].

    • Search Google Scholar
    • Export Citation
  • Sun, X., , and Barros A. P. , 2008: Practical challenges on the estimation of universal multifractal parameters of rainfall observations. Eos, Trans. Amer. Geophys. Union, 89 .(Fall Meeting Suppl.). Abstract NG33A-1209.

    • Search Google Scholar
    • Export Citation
  • Tanré, D., , Artuxo P. , , Yuter S. , , and Kaufman Y. , 2008: In situ and remote sensing techniques for measuring aerosols, clouds, and precipitation. Aerosol Pollution Impacts on Precipitation: A Scientific Review, Z. Levin, and W. R. Cotton, Eds., Springer, 143–203.

    • Search Google Scholar
    • Export Citation
  • Tao, K., , and Barros A. P. , 2008: Metrics to describe the dynamical evolution of atmospheric moisture: Intercomparison of model (NARR) and observations (ISCCP). J. Geophys. Res., 113 , D14125. doi:10.1029/2007JD009337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessier, Y., , Lovejoy S. , , and Schertzer D. , 1993: Universal multifractals: Theory and observations for rain and clouds. J. Appl. Meteor., 32 , 223250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessier, Y., , Lovejoy S. , , and Schertzer D. , 1994: Multifractal analysis and simulation of the global meteorological network. J. Appl. Meteor., 33 , 15721586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessier, Y., , Lovejoy S. , , Hubert P. , , Schertzer D. , , and Pecknold S. , 1996: Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J. Geophys. Res., 101 , 2642726440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veneziano, D., , and Furcolo P. , 1999: A modified double trace moment method of multifractal analysis. Fractals, 7 , 181195.

  • Waymire, E. C., , and Gupta V. K. , 1981a: The mathematical structure of rainfall representation: 1. A review of the stochastic rainfall models. Water Resour. Res., 17 , 12611272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waymire, E. C., , and Gupta V. K. , 1981b: The mathematical structure of rainfall representation: 2. A review of the point process theory. Water Resour. Res., 17 , 12731285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waymire, E. C., , and Gupta V. K. , 1981c: The mathematical structure of rainfall representation: 3. Some applications of the point process theory to rainfall processes. Water Resour. Res., 17 , 12861294.

    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., 2004: Predicted twenty-first-century changes in seasonal extreme precipitation events in the parallel climate model. J. Climate, 17 , 42814290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., , and Wigley T. M. L. , 2002: Future changes in the distribution of daily precipitation totals across North America. Geophys. Res. Lett., 29 , 1135. doi:10.1029/2001GL013048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., , and Arkin P. A. , 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., , and Arkin P. A. , 1998: Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J. Climate, 11 , 137164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and Coauthors, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16 , 21972214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaglom, A. M., 1966: The influence of fluctuations in energy dissipation on the shape of turbulence characteristics in the inertial interval. Sov. Phys. Dokl., 11 , 2629.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F., , and Kharin V. V. , 1998: Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling. J. Climate, 11 , 22002222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F., , and Hegerl G. , 2008: Attributing cause and effect. Nature, 453 , 296297.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 65 8
PDF Downloads 51 51 4

An Evaluation of the Statistics of Rainfall Extremes in Rain Gauge Observations, and Satellite-Based and Reanalysis Products Using Universal Multifractals

View More View Less
  • 1 Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina
© Get Permissions
Restricted access

Abstract

Confidence in the estimation of variations in the frequency of extreme events, and specifically extreme precipitation, in response to climate variability and change is key to the development of adaptation strategies. One challenge to establishing a statistical baseline of rainfall extremes is the disparity among the types of datasets (observations versus model simulations) and their specific spatial and temporal resolutions. In this context, a multifractal framework was applied to three distinct types of rainfall data to assess the statistical differences among time series corresponding to individual rain gauge measurements alone—National Climatic Data Center (NCDC), model-based reanalysis [North America Regional Reanalysis (NARR) grid points], and satellite-based precipitation products [Global Precipitation Climatology Project (GPCP) pixels]—for the western United States (west of 105°W). Multifractal analysis provides general objective metrics that are especially adept at describing the statistics of extremes of time series. This study shows that, as expected, multifractal parameters estimated from the NCDC rain gauge dataset map the geography of known hydrometeorological phenomena in the major climatic regions, including the strong orographic gradients from west to east; whereas the NARR parameters reproduce the spatial patterns of NCDC parameters, but the frequency of large rainfall events, the magnitude of maximum rainfall, and the mean intermittency are underestimated. That is, the statistics of the NARR climatology suggest milder extremes than those derived from rain gauge measurements. The spatial distributions of GPCP parameters closely match the NCDC parameters over arid and semiarid regions (i.e., the Southwest), but there are large discrepancies in all parameters in the midlatitudes above 40°N because of reduced sampling. This study provides an alternative independent backdrop to benchmark the use of reanalysis products and satellite datasets to assess the effect of climate change on extreme rainfall.

Corresponding author address: Xiaoming Sun, Duke University, Box 90287, 2457 CIEMAS Fitzpatrick Bldg., Durham, NC 27708. Email: xiaoming.sun@duke.edu

Abstract

Confidence in the estimation of variations in the frequency of extreme events, and specifically extreme precipitation, in response to climate variability and change is key to the development of adaptation strategies. One challenge to establishing a statistical baseline of rainfall extremes is the disparity among the types of datasets (observations versus model simulations) and their specific spatial and temporal resolutions. In this context, a multifractal framework was applied to three distinct types of rainfall data to assess the statistical differences among time series corresponding to individual rain gauge measurements alone—National Climatic Data Center (NCDC), model-based reanalysis [North America Regional Reanalysis (NARR) grid points], and satellite-based precipitation products [Global Precipitation Climatology Project (GPCP) pixels]—for the western United States (west of 105°W). Multifractal analysis provides general objective metrics that are especially adept at describing the statistics of extremes of time series. This study shows that, as expected, multifractal parameters estimated from the NCDC rain gauge dataset map the geography of known hydrometeorological phenomena in the major climatic regions, including the strong orographic gradients from west to east; whereas the NARR parameters reproduce the spatial patterns of NCDC parameters, but the frequency of large rainfall events, the magnitude of maximum rainfall, and the mean intermittency are underestimated. That is, the statistics of the NARR climatology suggest milder extremes than those derived from rain gauge measurements. The spatial distributions of GPCP parameters closely match the NCDC parameters over arid and semiarid regions (i.e., the Southwest), but there are large discrepancies in all parameters in the midlatitudes above 40°N because of reduced sampling. This study provides an alternative independent backdrop to benchmark the use of reanalysis products and satellite datasets to assess the effect of climate change on extreme rainfall.

Corresponding author address: Xiaoming Sun, Duke University, Box 90287, 2457 CIEMAS Fitzpatrick Bldg., Durham, NC 27708. Email: xiaoming.sun@duke.edu

Save