• Alessandri, A., , and Navarra A. , 2008: On the coupling between vegetation and rainfall inter-annual anomalies: Possible contributions to seasonal rainfall predictability over land areas. Geophys. Res. Lett., 35 , L02718. doi:10.1029/2007GL032415.

    • Search Google Scholar
    • Export Citation
  • Alessandri, A., , Gualdi S. , , Polcher J. , , and Navarra A. , 2007: Effects of land surface–vegetation on the boreal summer surface climate of a GCM. J. Climate, 20 , 255278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AMS Council, 2001: Statement on seasonal to interannual climate prediction. Bull. Amer. Meteor. Soc., 82 , 701703.

  • Barros, V., , Chamorro L. , , Coronel G. , , and Baez J. , 2004: The major discharge events in the Paraguay River: Magnitudes, source regions, and climate forcings. J. Hydrometeor., 5 , 11611170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., , Oleson K. W. , , Vertenstein M. , , Levis S. , , Zeng X. , , Dai Y. , , Dickinson R. E. , , and Yang Z-L. , 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15 , 31233149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstetter, M. L., , and Erickson D. J. , 2003: Continental runoff dynamics in the Community Climate System Model 2 (CCSM2) control simulation. J. Geophys. Res., 108 , 4550. doi:10.1029/2002JD003212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decharme, B., , and Douville H. , 2007: Global validation of the ISBA sub-grid hydrology. Climate Dyn., 29 , 2137.

  • Dirmeyer, P. A., , and Zeng F. J. , 1999: An update to the distribution and treatment of vegetation and soil properties in SSiB. Centre for Land–Ocean–Atmosphere Studies Tech. Rep. 78, 25 pp.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , and Tan L. , 2001: A multi-decadal global land-surface data set of state variable and fluxes. Centre for Land–Ocean–Atmosphere Studies Tech. Rep. 102, 43 pp. [Available online at http://grads.iges.org/pubs/ctr_102.pdf].

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , Gao X. , , Zhao M. , , Guo Z. , , Oki T. , , and Hanasaki N. , 2006: GSWP-2: Multimodel analysis and implication for our perception of the land surface. Bull. Amer. Meteor. Soc., 87 , 13811397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducharne, A., , Koster R. D. , , Suarez M. J. , , Stieglitz M. , , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model. Part 2: Parameter estimation and model demonstration. J. Geophys. Res., 105 , (D20). 2482324838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, M. O., 1989: Global gridded elevation and bathymetry on 5-minute geographic grid (ETOPO5): Digital raster data on a 5-minute geographic (lat/long) 2160x4320 (centroid-registered) grid. NOAA, National Geophysical Data Center.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., , Mitchell K. E. , , Lin Y. , , Grunmann P. , , Rogers E. , , Gayno G. , , Koren V. , , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Essery, R. L. H., , Best M. J. , , Betts R. A. , , Cox P. M. , , and Taylor C. M. , 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4 , 530543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etchevers, P., , Colaz C. , , and Habets F. , 2001: Simulation of the water budget and the rivers flows of the Rhone basin from 1981 to 1994. J. Hydrol., 244 , 6085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., , and Viterbo P. , 2006: The European summer of 2003: Sensitivity to soil water initial conditions. J. Climate, 19 , 36593680.

  • Fischer, E. M., , Seneviratne S. , , Lüthi D. , , and Schär C. , 2007: Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34 , L06707. doi:10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., , and Dirmeyer P. A. , 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 1. Intermodel comparison. J. Geophys. Res., 111 , D22S02. doi:10.1029/2006JD007233.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., , Dirmeyer P. A. , , Hu Z-Z. , , Gao X. , , and Zhao M. , 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res., 111 , D22S03. doi:10.1029/2006JD007845.

    • Search Google Scholar
    • Export Citation
  • Gusev, Y. M., , and Nasonova O. N. , 2003: The simulation of heat and water exchange in the boreal spruce forest by the land-surface model SWAP. J. Hydrol., 280 , 162191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagemann, S., , and Dümenil L. , 1998a: A parametrization of lateral waterflow for the global scale. Climate Dyn., 14 , 1741.

  • Hagemann, S., , and Dümenil L. , 1998b: Documentation for the Hydrological Discharge Model. Max Planck Institute for Meteorology Tech. Rep. 17, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Hall, F. G., and Coauthors, 2006: The ISLSCP Initiative II global data sets: Surface boundary conditions and atmospheric forcings for land-atmosphere studies. J. Geophys. Res., 111 , D22S01. doi:10.1029/2006JD007366.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., , Kanae S. , , and Oki T. , 2006: A reservoir operation scheme for global river routing models. J. Hydrol., 327 , 2241.

  • Hanasaki, N., , Kanae S. , , Oki T. , , Masuda K. , , Motoya K. , , Shirakawa N. , , Shen Y. , , and Tanaka K. , 2008: An integrated model for the assessment of global water resources—Part 1: Model description and input meteorological forcing. Hydrol. Earth Syst. Sci., 12 , 10071025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanson, C. L., , Pierson F. B. , , and Johnson G. L. , 2004: Dual-gauge system for measuring precipitation: Historical development and use. J. Hydrol. Eng., 9 , 350359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , Ebisuzaki W. , , Woollen J. , , Yang S. K. , , Hnilo J. J. , , Fiorino M. , , and Potter G. L. , 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , and Suarez M. J. , 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97 , (D3). 26972715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Suarez M. J. , , Ducharne A. , , Stieglitz M. , , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model. 1. Model structure. J. Geophys. Res., 105 , (D20). 2480924822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7 , 590610.

  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem. Cycles, 19 , GB1015. doi:10.1029/2003GB002199.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., , and Sturm M. , 2004: The role of winter sublimation in the Arctic moisture budget. Nord. Hydrol., 35 , 325334.

  • Manabe, S., 1969: Climate and the ocean circulation. I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev., 97 , 739774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., , Alves O. , , and Hendon H. H. , 2008: An enhanced moisture convergence–evaporation feedback mechanism for MJO air–sea interaction. J. Atmos. Sci., 65 , 970986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., , and Shmakin A. B. , 2002a: Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) model. J. Hydrometeor., 3 , 283299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., , and Shmakin A. B. , 2002b: Global modeling of land water and energy balances. Part II: Land characteristic contributions to spatial variability. J. Hydrometeor., 3 , 301310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mocko, D. M., , and Sud Y. C. , 2001: Refinements to SSiB with an emphasis on snow physics: Evaluation and validation using GSWP and Valdai data. Earth Interactions, 5 .[Available online at http://EarthInteractions.org].

    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., , and Yang L. , 2003: The versatile integrator of surface atmospheric processes. Part II: Evaluation of three topography-based runoff schemes. Global Planet. Change, 38 , 191208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., , Nishimura T. , , and Dirmeyer P. A. , 1999: Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J. Meteor. Soc. Japan, 77 , 235255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., , Vinnikov K. Y. , , Srinivasan G. , , Entin J. K. , , Hollinger S. E. , , Speranskaya N. A. , , Liu S. , , and Namkhai A. , 2000: The global soil moisture data bank. Bull. Amer. Meteor. Soc., 81 , 12811299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5, part I. Max-Planck-Institut für Meteorologie Rep. 349, 127 pp.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and Zhang Y. C. , 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantity based on ISCCP data sets: 2. Validation and first results. J. Geophys. Res., 100 , 11671197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudolf, B., , Hauschild H. , , Reuth W. , , and Schneider U. , 1994: Terrestrial precipitation analysis: Operational method and required density of point measurement. Global Precipitation and Climate Change, M. Desbois and F. Desalmand, Eds., Springer, 173–186.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and Gibson J. K. , 2000: The ERA-40 project plan. ECMWF, ERA-40 Proj. Rep., Ser. 1, 63 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/ERA40_PRS_1.pdf].

    • Search Google Scholar
    • Export Citation
  • Singh, V. P., 1988: Rainfall-Runoff Modelling. Vol. 1, Hydrologic Systems. Prentice Hall, 480 pp.

  • Solomon, S., , Qin D. , , Manning M. , , Marquis M. , , Averyt K. , , Tignor M. M. B. , , Miller H. L. Jr., , and Chen Z. , Eds. 2007: Climate Change 2007: The Physical Sciences Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Stackhouse P. W. Jr., , , Gupta S. K. , , Cox S. J. , , Chiacchio M. , , and Mikovitz J. C. , 2000: The SRB project release 2 data set: An update. GEWEX News, No. 10, International GEWEX Project Office, Silver Spring, MD, 4.

    • Search Google Scholar
    • Export Citation
  • Takeuchi, K., 2001: Increasing vulnerability to extreme floods and societal needs of hydrological forecasting. Hydrol. Sci. J., 46 , 869881.

  • Vörösmarty, C. J., , and Sahagian D. , 2000: Anthropogenic disturbance of the terrestrial water cycle. Bioscience, 50 , 753765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., , Sellers P. J. , , Kinter J. L. , , and Shukla J. , 1991: A simplified biosphere model for global climate studies. J. Climate, 4 , 345364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Z-L., , and Niu G-Y. , 2003: The versatile integrator of surface and atmosphere processes. Part I: Model description. Global Planet. Change, 38 , 175189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, N., , Mariotti A. , , and Wetzel P. , 2005: Terrestrial mechanisms of interannual CO2 variability. Global Biogeochem. Cycles, 19 , GB1016. doi:10.1029/2004GB002273.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , and Dirmeyer P. , 2003: Production and analysis of GSWP-2 near-surface meteorology data sets. COLA Technical Report 159, 22 pp. [Available online at ftp://grads.iges.org/pub/ctr/ctr_159.pdf].

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 3
PDF Downloads 30 30 1

The Sensitivity of Simulated River Discharge to Land Surface Representation and Meteorological Forcings

View More View Less
  • 1 Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy
  • | 2 Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland
  • | 3 Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy
  • | 4 Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
© Get Permissions
Restricted access

Abstract

The discharge of freshwater into oceans represents a fundamental process in the global climate system, and this flux is taken into account in simulations with general circulation models (GCMs). Moreover, the availability of realistic river routing schemes is a powerful instrument to assess the validity of land surface components, which have been recognized to be crucial for the global climate simulation. In this study, surface and subsurface runoff generated by the 13 land surface schemes (LSSs) participating in the Second Global Soil Wetness Project (GSWP-2) are used as input fields for the Hydrology Discharge (HD) routing model to simulate discharge for 30 of the world’s largest rivers. The simplest land surface models do not provide a good representation of runoff, and routed river flows using these inputs are affected by many biases. On the other hand, HD shows the best simulations when forced by two of the more sophisticated schemes. The multimodel ensemble GSWP-2 generates the best phasing of the annual cycle as well as a good representation of absolute values, although the ensemble mean tends to smooth the peaks. Finally, the intermodel comparison shows the limits and deficiencies of a velocity-constant routing model such as HD, particularly in the phase of mean annual discharge.

The second part of the study assesses the sensitivity of river discharge to the variation of external meteorological forcing. The Center for Ocean–Land–Atmosphere Studies version of the SSiB model is constrained with different meteorological fields and the resulting runoff is used as input for HD. River flow is most sensitive to precipitation variability, but changes in radiative forcing affect discharge as well, presumably because of the interaction with evaporation. Also, this analysis provides an estimate of the sensitivity of river discharge to precipitation variations. A few areas (e.g., central and eastern Asia, the Mediterranean, and much of the United States) show a magnified response of river discharge to a given percentage change in precipitation. Hence, an amplified effect of droughts as indicated by the consensus of climate change predictions may occur in places such as the Mediterranean. Conversely, increasing summer precipitation foreseen in places like southern and eastern Asia may amplify floods in these poor and heavily populated regions. Globally, a 1% fluctuation in precipitation forcing results in an average 2.3% change in discharge. These results can be used for the definition and assessment of new strategies for land use and water management in the near future.

Corresponding author address: Stefano Materia, Centro Euro-Mediterraneo per i Cambiamenti Climatici, Viale Aldo Moro, 44–40127 Bologna, Italy. Email: stefano.materia@cmcc.it

Abstract

The discharge of freshwater into oceans represents a fundamental process in the global climate system, and this flux is taken into account in simulations with general circulation models (GCMs). Moreover, the availability of realistic river routing schemes is a powerful instrument to assess the validity of land surface components, which have been recognized to be crucial for the global climate simulation. In this study, surface and subsurface runoff generated by the 13 land surface schemes (LSSs) participating in the Second Global Soil Wetness Project (GSWP-2) are used as input fields for the Hydrology Discharge (HD) routing model to simulate discharge for 30 of the world’s largest rivers. The simplest land surface models do not provide a good representation of runoff, and routed river flows using these inputs are affected by many biases. On the other hand, HD shows the best simulations when forced by two of the more sophisticated schemes. The multimodel ensemble GSWP-2 generates the best phasing of the annual cycle as well as a good representation of absolute values, although the ensemble mean tends to smooth the peaks. Finally, the intermodel comparison shows the limits and deficiencies of a velocity-constant routing model such as HD, particularly in the phase of mean annual discharge.

The second part of the study assesses the sensitivity of river discharge to the variation of external meteorological forcing. The Center for Ocean–Land–Atmosphere Studies version of the SSiB model is constrained with different meteorological fields and the resulting runoff is used as input for HD. River flow is most sensitive to precipitation variability, but changes in radiative forcing affect discharge as well, presumably because of the interaction with evaporation. Also, this analysis provides an estimate of the sensitivity of river discharge to precipitation variations. A few areas (e.g., central and eastern Asia, the Mediterranean, and much of the United States) show a magnified response of river discharge to a given percentage change in precipitation. Hence, an amplified effect of droughts as indicated by the consensus of climate change predictions may occur in places such as the Mediterranean. Conversely, increasing summer precipitation foreseen in places like southern and eastern Asia may amplify floods in these poor and heavily populated regions. Globally, a 1% fluctuation in precipitation forcing results in an average 2.3% change in discharge. These results can be used for the definition and assessment of new strategies for land use and water management in the near future.

Corresponding author address: Stefano Materia, Centro Euro-Mediterraneo per i Cambiamenti Climatici, Viale Aldo Moro, 44–40127 Bologna, Italy. Email: stefano.materia@cmcc.it

Save