• Beven, K. J., 1982: On subsurface stormflow: An analysis of response times. Hydrol. Sci. J., 27 , 505521.

  • Beven, K. J., , and Kirkby M. J. , 1979: A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24 , 4369.

  • Beven, K. J., , Lamb R. , , Romanowicz R. , , and Freer J. , 1995: TOPMODEL. Computer Models of Watershed Hydrology, V. P. Singh, Ed., Water Resources Publications, 627–668.

    • Search Google Scholar
    • Export Citation
  • Bonnifait, L., , Delrieu G. , , Le Lay M. , , Boudevillain B. , , Masson A. , , Belleudy P. , , Gaume E. , , and Saulnier G. M. , 2009: Hydrologic and hydraulic distributed modeling with radar rainfall input: Reconstruction of the 8-9 September 2002 catastrophic flood event in the Gard region, France. Adv. Water Resour., 32 , 10771089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boone, A., , Masson V. , , Meyers T. , , and Noilhan J. , 2000: The influence of the inclusion of soil freezing on simulations by a soil–vegetation–atmosphere transfer scheme. J. Appl. Meteor., 39 , 15441569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bubnová, R., , Horányi A. , , and Malardel S. , 1993: International project ARPEGE/ALADIN. EWGLAM Newsletter, No. 22, Institut Royal Météorologique de Belgique, Brussels, Belgium, 117–130.

    • Search Google Scholar
    • Export Citation
  • Cappus, P., 1960: Bassin expérimental d’Alrance—Étude des lois de l’écoulement—Application au calcul et à la prévision des débits (Alrance experimental watershed—Laws of flow study—Application to the calculation and the forecast of flows). Houille Blanche, 15A , 493520.

    • Search Google Scholar
    • Export Citation
  • Chen, J., , and Kumar P. , 2001: Topographic influence on the seasonal and interannual variation of water and energy balance of basin in North America. J. Climate, 14 , 19892014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clapp, R., , and Hornberger G. , 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14 , 601604.

  • Courtier, P., , and Geleyn J. F. , 1988: A global numerical weather prediction model with variable resolution: Application to the shallow-water equation. Quart. J. Roy. Meteor. Soc., 114 , 13211346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1977: A parameterization of ground-surface moisture content for use in atmosphere prediction models. J. Appl. Meteor., 16 , 11821185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decharme, B., , and Douville H. , 2006: Introduction of a sub-grid hydrology in the ISBA land surface model. Climate Dyn., 26 , 6578.

  • Decharme, B., , Douville H. , , Boone A. , , Habets F. , , and Noilhan J. , 2006: Impact of an exponential profile of saturated hydraulic conductivity within the ISBA LSM: Simulations over the Rhône basin. J. Hydrometeor., 7 , 6180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delrieu, G., and Coauthors, 2005: The catastrophic flash-flood event of 8–9 September 2002 in the Gard region, France: A first case study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. J. Hydrometeor., 6 , 3452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducharne, A., , Koster R. D. , , Suarez M. J. , , Stieglitz M. , , and Kumar P. , 2000: A catchment-based approach to modelling land surface processes in a general circulation model. Part 2: Parameter estimation and model demonstration. J. Geophys. Res., 105 , 2482324838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducrocq, V., , Nuissier O. , , Ricard D. , , Lebeaupin C. , , and Thouvenin T. , 2008: A numerical study of three catastrophic precipitating events over southern France. Part II: Mesoscale triggering and stationarity factors. Quart. J. Roy. Meteor. Soc., 134 , 131145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dümenil, L., , and Todini E. , 1992: A rainfall-runoff scheme for use in the Hamburg climate model. Adv. Theor. Hydrol., 9 , 129157.

  • Dune, T., , and Black R. D. , 1970: Partial area contributions to storm runoff in a small New England watershed. Water Resour. Res., 6 , 12961311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., , and Wood E. F. , 1994: Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res., 30 , 30613078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., , Wood E. F. , , Sivapalan M. , , and Thongs D. J. , 1992: A catchment scale water balance model for FIFE. J. Geophys. Res., 97 , 1899719007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1963: Objective Analysis of Meteorological Fields. Gidrometeorologicheskoe izdate’stvo, 286 pp.

  • Habets, F., , and Saulnier G. M. , 2001: Subgrid runoff parameterization. Phys. Chem. Earth, 26 , 455459.

  • Habets, F., and Coauthors, 1999: The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area. Part I: Model and database. J. Hydrol., 217 , 7596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habets, F., and Coauthors, 2008: The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France. J. Geophys. Res., 113 , D06113. doi:10.1029/2007JD008548.

    • Search Google Scholar
    • Export Citation
  • Huet, P., , Martin X. , , Prime J-L. , , Foin P. , , Laurain C. , , and Cannard P. , 2003: Retour d’expérience des crues de Septembre 2002 dans les départments du Gard, de l’Hérault, du Vaucluse, des Bouches du Rhône, de l’Ardèche et de la Drôme (Post-flood investigation of the September 2002 flood in the Gard, Hérault, Vaucluse, Bouches du Rhône, Ardèche and Drôme departments). Rapport de l’Inspection Générale de l’Environnement, Ministère de l’Ecologie et du Développement Durable, 133 pp. [Available online at http://www.ecologie.gouv.fr/IMG/pdf/crues_gard.pdf].

    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and Coauthors, 1998: The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16 , 90109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lardet, P., , and Obled C. , 1994: Real-time flood forecasting using a stochastic rainfall generator. J. Hydrol., 162 , 391408.

  • Lebel, T., , Bastin G. , , Obled C. , , and Creutin J-D. , 1987: On the accuracy of areal rainfall estimation: A case study. Water Resour. Res., 23 , 21232134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Lay, M., , and Saulnier G. M. , 2007: Exploring the signature of climate and landscape spatial variabilities in flash flood events: Case of the 8–9 September 2002 Cévenne-Vivarais catastrophic event. Geophys. Res. Lett., 34 , L13401. doi:10.1029/2007GLO29746.

    • Search Google Scholar
    • Export Citation
  • Le Lay, M., , Saulnier G. M. , , Galle S. , , Seguis L. , , Metadier M. , , and Peugeot C. , 2008: Model representation of the Sudananian hydrological processes: Application on the Donga catchment (Benin). J. Hydrol., 363 , 3241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, V., , Champeaux J. L. , , Chauvin F. , , Meriguet C. , , and Lacaze R. , 2003: A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Climate, 16 , 12611282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., , and Stutcliffe J. V. , 1970: River flow forecasting through conceptual models part 1 – A discussion of principles. J. Hydrol., 10 , 282290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G. Y., , and Yang Z. L. , 2003: The versatile integrator of surface atmospheric processes. Part II: Evaluation of three topography-based runoff schemes. Global Planet. Change, 38 , 191208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and Lacarrere P. , 1995: GCM grid-scale evaporation from mesoscale modeling. J. Climate, 8 , 206223.

  • Noilhan, J., , and Mahfouf J. F. , 1996: The ISBA land surface parameterization scheme. Global Planet. Change, 13 , 145159.

  • Nuissier, O., , Ducrocq V. , , Ricard D. , , Lebeaupin C. , , and Anquetin S. , 2008: A numerical study of three catastrophic precipitating events over southern France. Part I: Numerical framework and synoptic ingredients. Quart. J. Roy. Meteor. Soc., 134 , 111130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellarin, T., , Delrieu G. , , Saulnier G. M. , , Andrieu H. , , Vignal B. , , and Creutin J. D. , 2002: Hydrologic visibility of weather radar systems operating in mountainous regions: Case study for the Ardèche catchment (France). J. Hydrometeor., 3 , 539555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellenq, J., 2002: Couplage de la modelisation hydrologique avec la modélisation des Transferts Sol-Végétation-Atmosphere: Application à la spatialisation et à l’assimilation des données du satellite SMOS (Coupling of hydrological modeling with Soil-Vegetation-Atmosphere Transfer modeling: Application to spatialization and assimilation of SMOS satellite data). Ph.D. thesis, University of Toulouse, 244 pp.

  • Pellenq, J., , Kalma J. , , Boulet G. , , Saulnier G. M. , , Wooldridge S. , , Kerr Y. , , and Chehbouni A. , 2003: A disaggregation scheme for soil moisture based on topography and soil depth. J. Hydrol., 276 , 112127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quintana Seguí, P., and Coauthors, 2008a: Analysis of near-surface atmospheric variables: Validation of the SAFRAN analysis over France. J. Appl. Meteor., 47 , 92107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quintana Seguí, P., , Martin E. , , Habets F. , , and Noilhan J. , 2008b: Improvement, calibration and validation of a distributed hydrological model over France. Hydrol. Earth Syst. Sci. Discuss., 5 , 13191370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, S., , Koren V. , , Smith M. , , Zhang Z. , , Moreda F. , , and Seo D-J. , and DMIP participants, 2004: Overall distributed model intercomparison project results. J. Hydrol., 298 , 2760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saulnier, G. M., , and Datin R. , 2004: Analytical solving of a bias in the TOPMODEL framework water balance. Hydrol. Processes, 18 , 11951218.

  • Saulnier, G. M., , Obled C. , , and Beven K. J. , 1998: Including spatially variable effective soil depths in TOPMODEL. J. Hydrol., 202 , 158172.

    • Search Google Scholar
    • Export Citation
  • Seity, Y., , Brousseau P. , , Malardel S. , , Masson V. , , Bouttier F. , , and Hello G. , 2008: Status of AROME developments. ALADIN Newsletter, No. 33, ALADIN Numerical Weather Prediction Project, Toulouse, France, 40–47.

    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., , Rind D. , , Famiglietti J. , , and Rosenzweig C. , 1997: An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling. J. Climate, 10 , 118137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taha, A., , Gresillon J. M. , , and Clothier B. E. , 1997: Modelling the link between hillslope water movement and stream flow: Application to a small Mediterranean forest watershed. J. Hydrol., 203 , 1120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincendon, B., and Coauthors, 2008: Flash flood forecasting within the PREVIEW project: Value of high-resolution hydrometeorological coupled forecast. Meteor. Atmos. Phys., 103 , 115125.

    • Search Google Scholar
    • Export Citation
  • Wood, E., , Lettenmaier D. , , and Zartarian V. , 1992: A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res., 97 , 27172728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehe, E., , Becker R. , , Bárdossy A. , , and Plate E. , 2005: Uncertainty of simulated catchment runoff response in the presence of threshold processes: Role of initial soil moisture and precipitation. J. Hydrol., 315 , 183202.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 6
PDF Downloads 52 52 8

Coupling the ISBA Land Surface Model and the TOPMODEL Hydrological Model for Mediterranean Flash-Flood Forecasting: Description, Calibration, and Validation

View More View Less
  • * GAME/CNRM/Météo-France, CNRS, Toulouse, France
  • | + CNRS/LTHE, Grenoble, France
  • | # LCPC, Nantes, France
  • | @ CNRS/UMR SISYPHE, Paris, France
  • | 5 CNRS/EDYTEM, Université de Savoie, Chambéry, France
© Get Permissions
Restricted access

Abstract

Innovative coupling between the soil–vegetation–atmosphere transfer (SVAT) model Interactions between Soil, Biosphere, and Atmosphere (ISBA) and the hydrological model TOPMODEL has been specifically designed for flash-flood forecasting in the Mediterranean area. The coupled model described in this study combines the advantages of the two types of model: the accurate representation of water and energy transfer between the soil and the atmosphere within the SVAT column and an explicit representation of the lateral transfer of water over the hydrological catchment unit. Another advantage of this coupling is that the number of parameters to be calibrated is reduced by two, as only two parameters instead of four parameters concern the TOPMODEL formulation used here. The parameters to be calibrated concern only the water transfer. The model was calibrated for the simulation of flash-flood events on the three main watersheds covering the French Cévennes–Vivarais region using a subset of past flash-flood events having occurred since 2000. The complementary subset of flash-flood events was then used to carry out an objective verification of the coupled model after calibration. The evaluation on these six independent past flash-flood events shows satisfactory results. The comparison of the observed and simulated hydrographs demonstrates that no flash-flood peaks are missed. Relevant information for flash-flood forecasting can always be inferred from the simulations, even for those with quite poor results, making the system useful for real-time and operational flash-flood forecasting.

** Current affiliation: Météo-France, Toulouse, France

Corresponding author address: Ludovic Bouilloud, Météo-France, DPREVI/GCRI, 42 Avenue Gaspard Coriolis, 31057 Toulouse CEDEX, France. Email: ludovic.bouilloud@meteo.fr

Abstract

Innovative coupling between the soil–vegetation–atmosphere transfer (SVAT) model Interactions between Soil, Biosphere, and Atmosphere (ISBA) and the hydrological model TOPMODEL has been specifically designed for flash-flood forecasting in the Mediterranean area. The coupled model described in this study combines the advantages of the two types of model: the accurate representation of water and energy transfer between the soil and the atmosphere within the SVAT column and an explicit representation of the lateral transfer of water over the hydrological catchment unit. Another advantage of this coupling is that the number of parameters to be calibrated is reduced by two, as only two parameters instead of four parameters concern the TOPMODEL formulation used here. The parameters to be calibrated concern only the water transfer. The model was calibrated for the simulation of flash-flood events on the three main watersheds covering the French Cévennes–Vivarais region using a subset of past flash-flood events having occurred since 2000. The complementary subset of flash-flood events was then used to carry out an objective verification of the coupled model after calibration. The evaluation on these six independent past flash-flood events shows satisfactory results. The comparison of the observed and simulated hydrographs demonstrates that no flash-flood peaks are missed. Relevant information for flash-flood forecasting can always be inferred from the simulations, even for those with quite poor results, making the system useful for real-time and operational flash-flood forecasting.

** Current affiliation: Météo-France, Toulouse, France

Corresponding author address: Ludovic Bouilloud, Météo-France, DPREVI/GCRI, 42 Avenue Gaspard Coriolis, 31057 Toulouse CEDEX, France. Email: ludovic.bouilloud@meteo.fr

Save