• Arkin, P. A., , and Meisner B. N. , 1987: The relationship between large-scale convective rainfall and cold cloud cover over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115 , 5174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellerby, T. J., , and Sun J. , 2005: Probabilistic and ensemble representations of the uncertainty in an IR/microwave satellite precipitation product. J. Hydrometeor., 6 , 10321044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borga, M., 2002: Accuracy of radar rainfall estimates for streamflow simulation. J. Hydrol., 267 , 2639.

  • Borga, M., , Anagnostou E. N. , , and Frank E. , 2000: On the use of real-time radar rainfall estimates for flood prediction in mountainous basins. J. Geophys. Res., 105 , (D2). 22692280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collischonn, B., , Collischonn W. , , and Tucci C. E. M. , 2008: Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. J. Hydrol., 360 , 207216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T., , Ceccato P. , , Grover-Kopec E. , , Lemma M. , , Connor S. J. , , and Ropelewski C. F. , 2007: Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens., 28 , 15031526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Q., , Sorooshian S. , , and Gupta V. K. , 1992: Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models. Water Resour. Res., 28 , 10151031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , Janowiak J. E. , , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88 , 4764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forman, B. A., , Vivoni E. R. , , and Margulis S. A. , 2008: Evaluation of ensemble-based distributed hydrologic model response with disaggregated precipitation products. Water Resour. Res., 44 , W12409. doi:10.1029/2008WR006827.

    • Search Google Scholar
    • Export Citation
  • Garrote, L., 1992: Real-time modeling of river basin response using radar-generated rainfall maps and a distributed hydrologic database. M.S. thesis, Dept. of Civil and Environmental Engineering, MIT, 501 pp.

  • Gebremichael, M., , and Krajewski W. F. , 2004: Characterization of the temporal sampling error in space-time-averaged rainfall estimates from satellites. J. Geophys. Res., 109 , D11110. doi:10.1029/2004JD004509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., , Woodley W. L. , , Grube P. G. , , Martin D. W. , , Stout J. , , and Sikdar D. N. , 1978: Rain estimation from geosynchronous satellite imagery—Visible and infrared studies. Mon. Wea. Rev., 106 , 11531171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guetter, A. K., , Georgakakos K. P. , , and Tsonis A. A. , 1996: Hydrologic applications of satellite data: 2. Flow simulation and soil water estimates. J. Geophys. Res., 101 , 2652726538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., , Hsu K-L. , , Sorooshian S. , , and Gao X. , 2004: Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network Cloud Classification System. J. Appl. Meteor., 43 , 18341852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., , Hsu K-L. , , Moradkhani H. , , and Sorooshian S. , 2006: Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res., 42 , W08421. doi:10.1029/2005WR004398.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , Adler R. F. , , Hossain F. , , Curtis S. , , and Huffman G. J. , 2007: A first approach to global runoff simulation using satellite rainfall estimation. Water Resour. Res., 43 , W08502. doi:10.1029/2006WR005739.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , and Anagnostou E. N. , 2004: Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction. J. Geophys. Res., 109 , D07102. doi:10.1029/2003JD003986.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , and Anagnostou E. N. , 2005: Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture. Adv. Water Resour., 28 , 13361350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., , and Anagnostou E. N. , 2006a: Assessment of a Multidimensional Satellite Rainfall Error Model for Ensemble Generation of Satellite Rainfall Data. IEEE Trans. Geosci. Remote Sens. Lett., 3 , 419423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., , and Anagnostou E. N. , 2006b: A two-dimensional satellite rainfall error model. IEEE Trans. Geosci. Remote Sens., 44 , 15111522.

  • Hossain, F., , Tang L. , , Anagnostou E. N. , , and Nikolopoulos E. I. , 2009: A practical guide to a space-time stochastic error model for simulation of high-resolution satellite rainfall data. Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 145–167.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , Adler R. F. , , Morrissey M. M. , , Bolvin D. T. , , Curtis S. , , Joyce R. , , McGavock B. , , and Susskind J. , 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanov, V. Y., , Vivoni E. R. , , Bras R. L. , , and Entekhabi D. , 2004: Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resour. Res., 40 , W11102. doi:10.1029/2004WR003218.

    • Search Google Scholar
    • Export Citation
  • Jury, W. A., , Gardner W. R. , , and Gardner W. H. , 1991: Soil Physics. 5th ed. John Wiley & Sons, 328 pp.

  • Kidd, C., , Kniveton D. R. , , Todd M. C. , , and Bellerby T. J. , 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4 , 10881104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., , and Smith J. A. , 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25 , 13871394.

  • Mascaro, G., , Vivoni E. R. , , and Deidda R. , 2010: Implications of ensemble quantitative precipitation forecast errors on distributed streamflow forecasting. J. Hydrometeor., 1 , 6986.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., , Krajewski W. F. , , Ferraro R. R. , , and Ba M. B. , 2002: Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. J. Appl. Meteor., 41 , 10651080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , and Lettenmaier D. P. , 2004: Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites. J. Geophys. Res., 109 , D02103. doi:10.1029/2003JD003497.

    • Search Google Scholar
    • Export Citation
  • Pessoa, M. L., , Bras R. L. , , and Williams E. R. , 1993: Use of weather radar for flood forecasting in the Sieve River basin: A sensitivity analysis. J. Appl. Meteor., 32 , 462475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharif, H. O., , Ogden F. L. , , Krajewski W. F. , , and Xue M. , 2004: Statistical analysis of radar rainfall error propagation. J. Hydrometeor., 5 , 199212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 2007: International Global Precipitation Measurement (GPM) program and mission: An overview. Measuring Precipitation from Space: EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Advances in Global Change Research Series, Vol. 28, Springer, 611–653.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , Bell T. L. , , Zhang Y. , , and Wood E. F. , 2003: Comparison of two methods for estimating the sampling-related uncertainty of satellite rainfall averages based on a large radar dataset. J. Climate, 16 , 37593778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, F., , Hong Y. , , and Lettenmaier D. P. , 2008: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J. Hydrometeor., 9 , 622640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilford, K. A., 1987: Real-time flood forecasting using low intensity resolution radar rainfall data. M.S. thesis, Dept. of Civil Engineering, University of Birmingham, 67 pp.

  • Tsintikidis, D., , Georgakakos K. P. , , Artan G. A. , , and Tsonis A. A. , 1999: A feasibility study on mean areal rainfall estimation and hydrologic response in the Blue Nile region using METEOSAT images. J. Hydrol., 221 , 97116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., , Ivanov V. Y. , , Bras R. L. , , and Entekhabi D. , 2004: Generation of triangulated irregular networks based on hydrological similarity. J. Hydrol. Eng., 9 , 288303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., , Ivanov V. Y. , , Bras R. L. , , and Entekhabi D. , 2005: On the effects of triangulated terrain resolution on distributed hydrologic model response. Hydrol. Processes, 19 , 21012122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., , Bowman R. S. , , Wyckoff R. L. , , Jakubowski R. T. , , and Richards K. E. , 2006a: Analysis of a monsoon flood event in an ephemeral tributary and its downstream hydrologic effects. Water Resour. Res., 42 , W03404. doi:10.1029/2005WR004036.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., , Entekhabi D. , , Bras R. L. , , Ivanov V. Y. , , Van Horne M. P. , , Grassotti C. , , and Hoffman R. N. , 2006b: Extending the predictability of hydrometeorological flood events using radar rainfall nowcasting. J. Hydrometeor., 7 , 660677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., , Entekhabi D. , , and Hoffman R. N. , 2007: Error propagation of radar rainfall nowcasting fields through a fully distributed flood forecasting model. J. Appl. Meteor. Climatol., 46 , 932940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilk, J., , Kniveton D. , , Andersson L. , , Layberry R. , , Todd M. C. , , Hughes D. , , Ringrose S. , , and Vanderpost C. , 2006: Estimating rainfall and water balance over the Okavango River Basin for hydrological applications. J. Hydrol., 331 , 1829.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 17
PDF Downloads 33 33 7

Understanding the Scale Relationships of Uncertainty Propagation of Satellite Rainfall through a Distributed Hydrologic Model

View More View Less
  • 1 Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut, and Institute of Inland Waters, Hellenic Centre for Marine Research, Anavissos, Greece
  • | 2 Civil and Environmental Engineering, Tennessee Technological University, Cookeville, Tennessee
  • | 3 Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut
  • | 4 Department of Land and Agroforest Environment, University of Padova, Padova, Italy
© Get Permissions
Restricted access

Abstract

The study presents a data-based numerical experiment performed to understand the scale relationships of the error propagation of satellite rainfall for flood evaluation applications in complex terrain basins. A satellite rainfall error model is devised to generate rainfall ensembles based on two satellite products with different retrieval accuracies and space–time resolutions. The generated ensembles are propagated through a distributed physics-based hydrologic model to simulate the rainfall–runoff processes at different basin scales. The resulted hydrographs are compared against the hydrograph obtained by using high-resolution radar rainfall as the “reference” rainfall input. The error propagation of rainfall to stream runoff is evaluated for a number of basin scales ranging between 100 and 1200 km2. The results from this study show that (i) use of satellite rainfall for flood simulation depends strongly on the scale of application (catchment area) and the satellite product resolution, (ii) different satellite products perform differently in terms of hydrologic error propagation, and (iii) the propagation of error depends on the basin size; for example, this study shows that small watersheds (<400 km2) exhibit a higher ability in dampening the error from rainfall to runoff than larger-sized watersheds, although the actual error increases as drainage area decreases.

Corresponding author address: Emmanouil N. Anagnostou, Department of Civil and Environmental Engineering, University of Connecticut, Unit 2037, Storrs, CT 06269. Email: manos@engr.uconn.edu

Abstract

The study presents a data-based numerical experiment performed to understand the scale relationships of the error propagation of satellite rainfall for flood evaluation applications in complex terrain basins. A satellite rainfall error model is devised to generate rainfall ensembles based on two satellite products with different retrieval accuracies and space–time resolutions. The generated ensembles are propagated through a distributed physics-based hydrologic model to simulate the rainfall–runoff processes at different basin scales. The resulted hydrographs are compared against the hydrograph obtained by using high-resolution radar rainfall as the “reference” rainfall input. The error propagation of rainfall to stream runoff is evaluated for a number of basin scales ranging between 100 and 1200 km2. The results from this study show that (i) use of satellite rainfall for flood simulation depends strongly on the scale of application (catchment area) and the satellite product resolution, (ii) different satellite products perform differently in terms of hydrologic error propagation, and (iii) the propagation of error depends on the basin size; for example, this study shows that small watersheds (<400 km2) exhibit a higher ability in dampening the error from rainfall to runoff than larger-sized watersheds, although the actual error increases as drainage area decreases.

Corresponding author address: Emmanouil N. Anagnostou, Department of Civil and Environmental Engineering, University of Connecticut, Unit 2037, Storrs, CT 06269. Email: manos@engr.uconn.edu

Save