• Abramowitz, G., 2005: Towards a benchmark for land surface models. Geophys. Res. Lett., 32 , L22702. doi:10.1029/2005GL024419.

  • Abramowitz, G., , Leuning R. , , Clark M. , , and Pitman A. , 2008: Evaluating the performance of land surface models. J. Climate, 21 , 54685481.

  • Ainsworth, E. A., , and Long S. P. , 2005: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol., 165 , 351372.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., , Meehl G. A. , , and Moore A. M. , 2002: Interdecadal modulation of Australian rainfall. Climate Dyn., 18 , 519531. doi:10.1007/s00382-001-0191-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aston, A. R., 1984: The effect of doubling atmospheric CO2 on streamflow: A simulation. J. Hydrol., 67 , 273280.

  • Betts, R. A., , Cox P. M. , , Lee S. E. , , and Woodward F. I. , 1997: Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature, 387 , 796799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, R. A., and Coauthors, 2007: Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature, 448 , 10371042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bounoua, L., and Coauthors, 1999: Interactions between vegetation and climate: Radiative and physiological effects of doubled atmospheric CO2. J. Climate, 12 , 309324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calvet, J-C., , Gibelin A-L. , , Roujean J-L. , , Martin E. , , Le Moigne P. , , Douville H. , , and Noilhan J. , 2008: Past and future scenarios of the effect of carbon dioxide on plant growth and transpiration for three vegetation types of southwestern France. Atmos. Chem. Phys., 8 , 397406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz, F. T., , Pitman A. J. , , and McGregor J. L. , 2010: Probabilistic simulations of the impact of increasing leaf-level atmospheric carbon dioxide on the global land surface. Climate Dyn., 34 , 361379. doi:10.1007/s00382-008-0497-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., , Shaikh M. , , Bryant R. , , and Graumlich L. , 1998: Interactive canopies for a climate model. J. Climate, 11 , 28232836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., , Ummenhofer C. C. , , and Santoso A. , 2006: Interannual rainfall extremes over southwest Western Australia linked to Indian Ocean climate variability. J. Climate, 19 , 19481969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, C., , Jackson R. , , and Mooney H. , 1995: Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant Cell Environ., 18 , 12141225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., , Knutson T. R. , , and Milly P. C. D. , 2006: Weak simulated extratropical responses to complete tropical deforestation. J. Climate, 19 , 28352850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finkele, K., , Katzfey J. J. , , Kowalczyk E. A. , , McGregor J. L. , , Zhang L. , , and Raupach M. R. , 2003: Modelling of the OASIS energy flux measurements using two canopy concepts. Bound.-Layer Meteor., 107 , 4979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorino, M., cited. 2007: AMIP II sea surface temperature and sea ice concentration observations. [Available online at http://www-pcmdi.llnl.gov/projects/amip/AMIP2EXPDSN/BCS_OBS/amip2_bcs.htm].

    • Search Google Scholar
    • Export Citation
  • Fox-Rabinovitz, M., , Côté J. , , Dugas B. , , Déqué M. , , and McGregor J. L. , 2006: Variable resolution general circulation models: Stretched-grid model intercomparison project (SGMIP). J. Geophys. Res., 111 , D16104. doi:10.1029/2005JD006520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, C., and Coauthors, 2005: Regional climate model intercomparison project for Asia. Bull. Amer. Meteor. Soc., 86 , 257266.

  • Gedney, N., , Cox P. M. , , Betts R. A. , , Boucher O. , , Huntingford C. , , and Stott P. A. , 2006: Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439 , 835838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7 , 611625.

  • Hall, F. G., , Collatz G. , , Los S. , , Brown de Colstoun E. , , and Landis D. , Eds. 2005: ISLSCP Initiative II. NASA, DVD/CD-ROM. [Available online at http://islscp2.sesda.com/ISLSCP2_1/html_pages/islscp2_home.html].

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., , McGuffie K. , , and Gross C. , 1995: Sensitivity of global climate model simulations to increased stomatal resistance and CO2 increases. J. Climate, 8 , 17381756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., , and Boville B. A. , 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hope, P. K., , Nicholls N. , , and McGregor J. L. , 2004: The rainfall response to permanent inland water in Australia. Aust. Meteor. Mag., 53 , 251262.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2008: CO2-induced suppression of transpiration cannot explain increasing runoff. Hydrol. Processes, 22 , 311314.

  • IOCI, 2002: Climate variability and change in south west Western Australia. Indian Ocean Climate Initiative Panel Tech. Rep., 34 pp.

  • Kergoat, L., , Lafont S. , , Douville H. , , Berthelot B. , , Dedieu G. , , Planton S. , , and Royer J-F. , 2002: Impact of doubled CO2 on global-scale leaf area index and evapotranspiration: Conflicting stomatal conductance and LAI responses. J. Geophys. Res., 107 , 4808. doi:10.1029/2001JD001245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7 , 590610.

  • Kowalczyk, E. A., , and Wang Y. P. , 2004: Greening of the CSIRO land surface scheme: Present and future. Extended Abstracts, 16th Annual Bureau of Meteorology Research Centre (BMRC) Modelling Workshop, Melbourne, VIC, Australia, BMRC, Research Rep. 104, 73–76.

    • Search Google Scholar
    • Export Citation
  • Kowalczyk, E. A., , Garratt J. R. , , and Krummel P. B. , 1994: Implementation of a soil-canopy scheme into the CSIRO GCM — Regional aspects of the model response. CSIRO Atmospheric Research Tech. Paper 32, 59 pp.

    • Search Google Scholar
    • Export Citation
  • Kowalczyk, E. A., , Wang Y. P. , , Law R. M. , , Davies H. L. , , McGregor J. L. , , and Abramowitz G. , 2006: The CSIRO Atmosphere Biosphere Land Exchange (CABLE) model for use in climate models and as an offline model. CSIRO Marine and Atmospheric Research Paper 13, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Lal, M., , McGregor J. L. , , and Nguyen K. C. , 2008: Very high-resolution climate simulation over Fiji using a global variable-resolution model. Climate Dyn., 30 , 293305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Law, R. M., , Kowalczyk E. A. , , and Wang Y-P. , 2006: Using atmospheric CO2 data to assess a simplified carbon-climate simulation for the 20th century. Tellus, 58B , 427437. doi:10.1111/j.1600-0889.2006.00198.x.

    • Search Google Scholar
    • Export Citation
  • Leuning, R., 1995: A critical appraisal of a coupled stomatal-photosynthesis model for C3 plants. Plant Cell Environ., 18 , 339357.

  • Levis, S., , Foley J. A. , , and Pollard D. , 2000: Large-scale vegetation feedbacks on a doubled CO2 climate. J. Climate, 13 , 13131325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., , and Chen W. Y. , 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111 , 4659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Martin, M., , Dickinson R. E. , , and Yang Z-L. , 1999: Use of a coupled land surface general circulation model to examine the impacts of doubled stomatal resistance on the water resources of the American Southwest. J. Climate, 12 , 33593375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxino, C. C., , McAvaney B. J. , , Pitman A. J. , , and Perkins S. E. , 2008: Ranking the AR4 climate models over the Murray-Darling Basin using simulated maximum temperature, minimum temperature and precipitation. Int. J. Climatol., 28 , 10971112. doi:10.1002/joc.1612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., 1993: Economical determination of departure points for semi-Lagrangian models. Mon. Wea. Rev., 121 , 221230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., 1996: Semi-Lagrangian advection on conformal-cubic grids. Mon. Wea. Rev., 124 , 13111322.

  • McGregor, J. L., 2003: A new convection scheme using a simple closure. Current issues in the parameterization of convection, BMRC Res. Rep. 93, 33–36.

    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., 2005: C-CAM geometric aspects and dynamical formulation. CSIRO Atmospheric Research Tech. Paper 70, 43 pp.

  • McGregor, J. L., , and Dix M. R. , 2001: The CSIRO conformal-cubic atmospheric GCM. Proc. IUTAM Symp. on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, Limerick, Ireland, International Union of Theoretical and Applied Mechanics, 197–202.

    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., , and Dix M. R. , 2008: An updated description of the Conformal-Cubic Atmospheric Model. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 51–76.

    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., , Nguyen K. C. , , and Katzfey J. J. , 2002: Regional climate simulations using a stretched-grid global model. Research activities in atmospheric and oceanic modeling, CAS/JSC Working Group on Numerical Experimentation Rep. 32, WMO Tech. Document 1105, 3.15–3.16.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 748–846.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2008: Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change Rep., 132 pp. [Available online at http://www.ipcc.ch/meetings/session28/doc8.pdf].

    • Search Google Scholar
    • Export Citation
  • Narisma, G., , and Pitman A. , 2004: The effect of including biospheric responses to CO2 on the impact of land-cover change over Australia. Earth Interactions, 8 .[Available online at http://EarthInteractions.org].

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., , and Xue Y. , 2006: Soil moisture regulates the biological response of elevated atmospheric CO2 concentrations in a coupled atmosphere biosphere model. Global Planet. Change, 54 , 94108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nunez, M., , and McGregor J. L. , 2007: Modelling future water environments of Tasmania, Australia. Climate Res., 34 , 2537.

  • Piao, S., , Friedlingstein P. , , Ciais P. , , de Noblet-Ducoudre N. , , Labat D. , , and Zaehle S. , 2007: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl. Acad. Sci. USA, 104 , 1524215247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., , Narisma G. T. , , Pielke R. Sr., , and Holbrook N. J. , 2004: Impact of land cover change on the climate of southwest Western Australia. J. Geophys. Res., 109 , D18109. doi:10.1029/2003JD004347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36 , L14814. doi:10.1029/2009GL039076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, D., , and Thompson S. , 1995: Use of a land-surface-transfer scheme (LSX) in a global climate model: The response to doubling stomatal resistance. Global Planet. Change, 10 , 129161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., , Casey T. , , Folland C. , , Colman A. , , and Mehta V. , 1999: Interdecadal modulation of the impact of ENSO on Australia. Climate Dyn., 15 , 319324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., , Finkele K. , , and Zhang L. , 1997: A soil-canopy atmosphere model (SCAM): Description and comparisons with field data. CSIRO Centre for Environmental Mechanics Tech. Rep. 132, 81 pp.

    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, M. D., , and Fels S. B. , 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96 , 90759096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271 , 14021406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., , and England M. H. , 2009: El Niño Modoki impacts on Australian rainfall. J. Climate, 22 , 31673471.

  • Taylor, K. E., , Williamson D. , , and Zwiers F. , 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Rep. 60, 28 pp.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., , and Murphy B. , 2007: Observed climate change in the South-East of Australia and its relation to large-scale modes of variability. BMRC Res. Lett., 6 , 611.

    • Search Google Scholar
    • Export Citation
  • Trewin, B. C., 2006: An exceptionally dry decade in parts of southern and eastern Australia: October 1996 – September 2006. Australian National Climate Centre Special Climate Statement 9, 9 pp.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., , Sen Gupta A. , , Pook M. J. , , and England M. H. , 2008: Anomalous rainfall over southwest Western Australia forced by Indian Ocean sea surface temperatures. J. Climate, 21 , 51135134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y-P., , and Leuning R. , 1998: A two-leaf model for canopy conductance, photosynthesis and portioning of available energy. Agric. For. Meteor., 91 , 89111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y-P., , Baldocchi D. , , Leuning R. , , Falge E. , , and Vesala T. , 2007: Estimating parameters in a land surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites. Global Change Biol., 13 , 652670. doi:10.1111/j.1365-2486.2006.01225.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 0
PDF Downloads 2 2 0

Contrasting Regional Responses to Increasing Leaf-Level Atmospheric Carbon Dioxide over Australia

View More View Less
  • 1 Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
  • | 2 Centre for Australian Weather and Climate Research, and CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia
  • | 3 Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
© Get Permissions
Restricted access

Abstract

Using a coupled atmosphere–land surface model, simulations were conducted to characterize the regional climate changes that result from the response of stomates to increases in leaf-level carbon dioxide (CO2) under differing conditions of moisture availability over Australia. Multiple realizations for multiple Januarys corresponding to dry and wet years were run, where only the leaf-level CO2 was varied at 280, 375, 500, 650, 840, and 1000 ppmv and the atmospheric CO2 was fixed at 375 ppmv. The results show the clear effect of increasing leaf-level CO2 on the transpiration via the stomatal response, particularly when sufficient moisture is available. Statistically significant reductions in transpiration generally lead to a significantly warmer land surface with decreases in rainfall. Increases in CO2 lead to increases in the magnitude and areal extent of the statistically significant mean changes in the surface climate. However, the results also show that the availability of moisture substantially affects the effect of increases in the leaf-level CO2, particularly for a moisture-limited region. The physiological feedback can indirectly lead to more rainfall via changes in the low-level moisture convergence and vertical velocity, which result in a cooling simulated over Western Australia. The significant changes in the surface climate presented in the results suggest that it is still important to incorporate these feedbacks in future climate assessments and projections for Australia. The influence of moisture availability also indicates that the capacity of the physiological feedback to affect the future climate may be affected by uncertainties in rainfall projections, particularly for water-stressed regions such as Australia.

Corresponding author address: Faye Cruz, Climate Change Research Centre, University of New South Wales, Sydney NSW 2052, Australia. Email: faye.cruz@gmail.com

Abstract

Using a coupled atmosphere–land surface model, simulations were conducted to characterize the regional climate changes that result from the response of stomates to increases in leaf-level carbon dioxide (CO2) under differing conditions of moisture availability over Australia. Multiple realizations for multiple Januarys corresponding to dry and wet years were run, where only the leaf-level CO2 was varied at 280, 375, 500, 650, 840, and 1000 ppmv and the atmospheric CO2 was fixed at 375 ppmv. The results show the clear effect of increasing leaf-level CO2 on the transpiration via the stomatal response, particularly when sufficient moisture is available. Statistically significant reductions in transpiration generally lead to a significantly warmer land surface with decreases in rainfall. Increases in CO2 lead to increases in the magnitude and areal extent of the statistically significant mean changes in the surface climate. However, the results also show that the availability of moisture substantially affects the effect of increases in the leaf-level CO2, particularly for a moisture-limited region. The physiological feedback can indirectly lead to more rainfall via changes in the low-level moisture convergence and vertical velocity, which result in a cooling simulated over Western Australia. The significant changes in the surface climate presented in the results suggest that it is still important to incorporate these feedbacks in future climate assessments and projections for Australia. The influence of moisture availability also indicates that the capacity of the physiological feedback to affect the future climate may be affected by uncertainties in rainfall projections, particularly for water-stressed regions such as Australia.

Corresponding author address: Faye Cruz, Climate Change Research Centre, University of New South Wales, Sydney NSW 2052, Australia. Email: faye.cruz@gmail.com

Save