• Anderson, M. C., , Norman J. M. , , Diak G. R. , , Kustas W. P. , , and Mecikalski J. R. , 1997: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ., 60 , 195216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., , Norman J. M. , , Mecikalski J. R. , , Torn R. D. , , Kustas W. P. , , and Basara J. B. , 2004: A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. J. Hydrometeor., 5 , 343363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., , Norman J. M. , , Mecikalski J. R. , , Otkin J. A. , , and Kustas W. P. , 2007a: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res., 112 , D10117. doi:10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., , Norman J. M. , , Mecikalski J. R. , , Otkin J. A. , , and Kustas W. P. , 2007b: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res., 112 , D11112. doi:10.1029/2006JD007507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bandara, K. M. P. S., 2003: Monitoring irrigation performance in Sri Lanka with high-frequency satellite measurements during the dry season. Agric. Water Manage., 58 , 159170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bastiaanssen, W. G. M., , Menenti R. , , Feddes R. , , and Holtslag A. , 1998: A remote sensing surface energy balance algorithm for lands (SEBAL). J. Hydrol., 212–213 , 198229.

    • Search Google Scholar
    • Export Citation
  • Bastiaanssen, W. G. M., , Noordman E. J. M. , , Pelgrum H. , , Davids G. , , Thoreson B. P. , , and Allen R. G. , 2005: SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig. Drain. Eng., 131 , 8593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2007: Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. J. Geophys. Res., 112 , D10108. doi:10.1029/2006JD008191.

    • Search Google Scholar
    • Export Citation
  • Caparrini, F., , Castelli F. , , and Entekhabi D. , 2004: Estimation of surface turbulent fluxes through assimilation of radiometric surface temperature sequences. J. Hydrometeor., 5 , 145159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherkauer, K. A., , Bowling L. C. , , and Lettenmaier D. P. , 2002: Variable Infiltration Capacity (VIC) cold land process model updates. Global Planet. Change, 38 , 151159.

    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., , DiGirolamo N. E. , , Susskind J. , , Darnell W. L. , , Gupta S. K. , , and Asrar G. , 1998: A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data - II. Regional and global patterns of seasonal and annual variations. J. Hydrol., 205 , 186204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cleugh, H. A., , Leuning R. , , Mu Q. , , and Running S. W. , 2007: Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ., 106 , 285304. doi:10.1016/j.rse.2006.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Consoli, S., , D’Urso G. , , and Toscano A. , 2006: Remote sensing to estimate ET-fluxes and the performance of an irrigation district in southern Italy. Agric. Water Manage., 81 , 295314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • David, J. S., , Valente F. , , and Gash J. H. C. , 2005: Evaporation of intercepted rainfall. Encyclopedia of Hydrological Sciences, M. G. Anderson and J. J. McDonnell, Eds., John Wiley & Sons, 627–634.

    • Search Google Scholar
    • Export Citation
  • Droogers, P., , and Bastiaanssen W. , 2002: Irrigation performance using hydrological and remote sensing modeling. J. Irrig. Drain. Eng., 128 , 1118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D. G., and Coauthors, 1999: An agenda for land surface hydrology research and a call for the second International Hydrological Decade. Bull. Amer. Meteor. Soc., 80 , 20432058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., , Sheffield J. , , and Wood E. F. , 2008: Evapotranspiration estimates from satellite remote sensing: Are present-day products of sufficient accuracy? Eos, Trans. Amer. Geophys. Union, 89 .(Fall Meeting Suppl.). Abstract H43G-1092.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., , Sheffield J. , , Wood E. F. , , and Gao H. , 2010: Quantifying uncertainty in a remote sensing based estimate of evapotranspiration over the continental United States. Int. J. Remote Sens., in press.

    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., , Tu K. P. , , and Baldocchi D. D. , 2008: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ., 112 , 901919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A. N., and Coauthors, 2005: Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sens. Environ., 99 , 5565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, F., , Schaaf C. B. , , Strahler A. H. , , Roesch A. , , Lucht W. , , and Dickinson R. , 2005: MODIS bidirectional reflectance distribution function and albedo Climate Modeling Grid products and the variability of albedo for major global vegetation types. J. Geophys. Res., 110 , D01104. doi:10.1029/2004JD005190.

    • Search Google Scholar
    • Export Citation
  • Gao, F., and Coauthors, 2008: An algorithm to produce temporally and spatially continuous MODIS-LAI time series. IEEE Geosci. Remote Sens. Lett., 5 , 6064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garatuza, J., , Shuttleworth W. J. , , Encinas D. , , MacNeil D. D. , , Stewart J. B. , , deBruin H. , , and Watts C. , 1998: Measurement and modeling evaporation for irrigated crops in north-west Mexico. Hydrol. Processes, 12 , 13971418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z. C., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7 , 611625.

  • Hall, F. G., and Coauthors, 2006: ISLSCP Initiative II global data sets: Surface boundary conditions and atmospheric forcings for land-atmosphere studies. J. Geophys. Res., 111 , D22S01. doi:10.1029/2006JD007366.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., , Defries R. S. , , Townshend J. R. G. , , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21 , 13311364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and Coauthors, 2006: The North American Monsoon Experiment (NAME) 2004 field campaign and modeling strategy. Bull. Amer. Meteor. Soc., 87 , 7994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houborg, R. M., , and Soegaard H. , 2004: Regional simulation of ecosystem CO2 and water vapor exchange for agricultural land using NOAA AVHRR and Terra MODIS satellite data. Application to Zealand, Denmark. Remote Sens. Environ., 93 , 150167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalma, J. D., , McVicar T. R. , , and McCabe M. F. , 2008: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys., 29 , 421469. doi:10.1007/s10712-008-9037-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., , Hatfield J. , , and Prueger J. H. , 2005: The Soil Moisture–Atmosphere Coupling Experiment (SMACEX): Background, hydrometeorological conditions, and preliminary findings. J. Hydrometeor., 6 , 791804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Lawrence, D. M., , Thornton P. E. , , Oleson K. W. , , and Bonan G. B. , 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J. Hydrometeor., 8 , 862880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leuning, R., , Zhang Y. Q. , , Rajaud A. , , Cleugh H. , , and Tu K. , 2008: A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res., 44 , W10419. doi:10.1029/2007WR006562.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Lettenmaier D. P. , , Wood E. F. , , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for GCMs. J. Geophys. Res., 99 , (D7). 1441514428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., , Wood E. F. , , and Lettenmaier D. P. , 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modifications. Global Planet. Change, 13 , 195206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., , and Ek M. , 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23 , 222234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , Wood A. W. , , Adam J. C. , , Lettenmaier D. P. , , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., , and Wood E. F. , 2006: Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors. Remote Sens. Environ., 105 , 271285. doi:10.1016/j.rse.2006.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., , Wood E. F. , , Wójcik R. , , Pan M. , , Sheffield J. , , Gao H. , , and Su H. , 2008: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies. Remote Sens. Environ., 112 , 430444. doi:10.1016/j.rse.2007.03.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 , D07S90. doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and environment. The State and Movement of Water in Living Organisms, G. E. Fogg, Ed., Society for Experimental Biology Symposia, Vol. 19, Academic Press, 205–234.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., , Heinsch F. A. , , Zhao M. , , and Running S. W. , 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111 , 519536. doi:10.1016/j.rse.2007.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munoz-Arriola, F., , Avissar R. , , Zhu C. , , and Lettenmaier D. P. , 2009: Sensitivity of the water resources of Rio Yaqui Basin, Mexico, to agriculture extensification under multiscale climate conditions. Water Resour. Res., 45 , W00A20. doi:10.1029/2007WR006783.

    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., , Nemani R. R. , , and Running S. W. , 1997: Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans. Geosci. Remote Sens., 35 , 13801393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemani, R. R., , and Running S. W. , 1989: Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. Appl. Meteor., 28 , 276284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., , and Ruiz-Barradas A. , 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: Varied representation. J. Climate, 19 , 815837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishida, K., , Nemani R. R. , , Glassy J. M. , , and Running S. W. , 2003a: Development of an evapotranspiration index from Aqua/MODIS for monitoring surface moisture status. IEEE Trans. Geosci. Remote Sens., 41 , 493501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishida, K., , Nemani R. R. , , Running S. W. , , and Glassy J. M. , 2003b: An operational remote sensing algorithm of land surface evaporation. J. Geophys. Res., 108 , 4270. doi:10.1029/2002JD002062.

    • Search Google Scholar
    • Export Citation
  • Norman, J. M., , Kustas W. P. , , and Humes K. S. , 1995: A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature. Agric. For. Meteor., 77 , 263293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norman, J. M., and Coauthors, 2003: Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour. Res., 39 , 1221. doi:10.1029/2002WR001775.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., , and Gilgen H. , 1991: Global Energy Balance Archive (GEBA), World Climate Programme–Water Project A7, Report 2: Database, interactive applications, retrieving data. Zürcher Geographische Schriften 44, 66 pp.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79 , 21152136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., , Wood E. F. , , Wójcik R. , , and McCabe M. F. , 2007: Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sens. Environ., 112 , 12821294. doi:10.1016/j.rse.2007.02.039.

    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., , and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100 , 8192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and Dueñas E. N. , 2004: The International Satellite Cloud Climatology Project (ISCCP) Web site: An online resource for research. Bull. Amer. Meteor. Soc., 85 , 167172.

    • Search Google Scholar
    • Export Citation
  • Santos, C., , Lorite I. J. , , Tasumi M. , , Allen R. G. , , and Fereres E. , 2008: Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level. Irrig. Sci., 26 , 277288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., , and Rossow W. B. , 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64 , 779784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Goteti G. , , and Wood E. F. , 2006: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19 , 30883111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Vinukollu R. K. , , Ferguson C. , , and Wood E. F. , 2008: Towards estimating and validating evapotranspiration estimates at global scale. Eos, Trans. Amer. Geophys. Union, 89 .(Fall Meeting Suppl.). Abstract H11A-0725.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Ferguson C. R. , , Troy T. J. , , Wood E. F. , , and McCabe M. F. , 2009: Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett., 36 , L07403. doi:10.1029/2009GL037338.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1993: Evaporation. Handbook of Hydrology, D. R. Maidment, Ed., McGraw-Hill, 4.1–4.53.

  • Stackhouse P. W. Jr., , , Gupta S. K. , , Cox S. J. , , Mikovitz J. C. , , Zhang T. , , and Chiacchio M. , 2004: 12-Year Surface Radiation Budget Data Set. GEWEX News, No. 14, International GEWEX Project Office, Silver Spring, MD, 10–12.

    • Search Google Scholar
    • Export Citation
  • Su, H., , McCabe M. F. , , Wood E. F. , , Su Z. , , and Prueger J. , 2005: Modeling evapotranspiration during SMACEX: Comparing two approaches for local- and regional-scale prediction. J. Hydrometeor., 6 , 910922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., 2002: The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci., 6 , 8599.

  • Tang, Q., , Peterson S. , , Cuenca R. H. , , Hagimoto Y. , , and Lettenmaier D. P. , 2009: Satellite-based near-real-time estimation of irrigated crop water consumption. J. Geophys. Res., 114 , D05114. doi:10.1029/2008JD010854.

    • Search Google Scholar
    • Export Citation
  • Tasumi, M., , and Allen R. G. , 2007: Satellite-based ET mapping to assess variation in ET with timing of crop development. Agric. Water Manage., 88 , 5462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., , and Running S. W. , 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor., 93 , 211228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troy, T. J., , and Wood E. F. , 2009: Comparison and evaluation of gridded radiation products across northern Eurasia. Environ. Res. Lett., 4 , 045008. doi:10.1088/1748-9326/4/4/045008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsvetsinskaya, E. A., , Schaaf C. B. , , Gao F. , , Strahler A. H. , , and Dickinson R. E. , 2006: Spatial and temporal variability in Moderate Resolution Imaging Spectroradiometer–derived surface albedo over global arid regions. J. Geophys. Res., 111 , D20106. doi:10.1029/2005JD006772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., , Trishchenko A. P. , , Khlopenkov K. V. , , and Davidson A. , 2006: Comparison of International Panel on Climate Change Fourth Assessment Report climate model simulations of surface albedo with satellite products over northern latitudes. J. Geophys. Res., 111 , D21108. doi:10.1029/2005JD006728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , Rossow W. B. , , Lacis A. A. , , Oinas V. , , and Mishchenko M. I. , 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 , D19105. doi:10.1029/2003JD004457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , Chiew F. H. S. , , Zhang L. , , Leuning R. , , and Cleugh H. A. , 2008: Estimating catchment evaporation and runoff using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res., 44 , W10420. doi:10.1029/2007WR006563.

    • Search Google Scholar
    • Export Citation
  • Zhu, C. M., , and Lettenmaier D. P. , 2007: Long-term climate and derived surface hydrology and energy flux data for Mexico, 1925–2004. J. Climate, 20 , 19361946.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 138 9
PDF Downloads 91 91 5

Long-Term Regional Estimates of Evapotranspiration for Mexico Based on Downscaled ISCCP Data

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
  • | 2 Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The development and evaluation of a long-term high-resolution dataset of potential and actual evapotranspiration for Mexico based on remote sensing data are described. Evapotranspiration is calculated using a modified version of the Penman–Monteith algorithm, with input radiation and meteorological data from the International Satellite Cloud Climatology Project (ISCCP) and vegetation distribution derived from Advanced Very High Resolution Radiometer (AVHRR) products. The ISCCP data are downscaled to ⅛° resolution using statistical relationships with data from the North American Regional Reanalysis (NARR). The final product is available at ⅛°, daily, for 1984–2006 for all Mexico. Comparisons are made with the NARR offline land surface model and measurements from approximately 1800 pan stations. The remote sensing estimate follows well the seasonal cycle and spatial pattern of the comparison datasets, with a peak in late summer at the height of the North American monsoon and highest values in low-lying and coastal regions. The spatial average over Mexico is biased low by about 0.3 mm day−1, with a monthly rmse of about 0.5 mm day−1. The underestimation may be related to the lack of a model for canopy evaporation, which is estimated to be up to 30% of total evapotranspiration. Uncertainties in both the remote sensing–based estimates (because of input data uncertainties) and the true value of evapotranspiration (represented by the spread in the comparison datasets) are up to 0.5 and 1.2 mm day−1, respectively. This study is a first step in quantifying the long-term variation in global land evapotranspiration from remote sensing data.

Corresponding author address: Justin Sheffield, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. Email: justin@princeton.edu

Abstract

The development and evaluation of a long-term high-resolution dataset of potential and actual evapotranspiration for Mexico based on remote sensing data are described. Evapotranspiration is calculated using a modified version of the Penman–Monteith algorithm, with input radiation and meteorological data from the International Satellite Cloud Climatology Project (ISCCP) and vegetation distribution derived from Advanced Very High Resolution Radiometer (AVHRR) products. The ISCCP data are downscaled to ⅛° resolution using statistical relationships with data from the North American Regional Reanalysis (NARR). The final product is available at ⅛°, daily, for 1984–2006 for all Mexico. Comparisons are made with the NARR offline land surface model and measurements from approximately 1800 pan stations. The remote sensing estimate follows well the seasonal cycle and spatial pattern of the comparison datasets, with a peak in late summer at the height of the North American monsoon and highest values in low-lying and coastal regions. The spatial average over Mexico is biased low by about 0.3 mm day−1, with a monthly rmse of about 0.5 mm day−1. The underestimation may be related to the lack of a model for canopy evaporation, which is estimated to be up to 30% of total evapotranspiration. Uncertainties in both the remote sensing–based estimates (because of input data uncertainties) and the true value of evapotranspiration (represented by the spread in the comparison datasets) are up to 0.5 and 1.2 mm day−1, respectively. This study is a first step in quantifying the long-term variation in global land evapotranspiration from remote sensing data.

Corresponding author address: Justin Sheffield, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. Email: justin@princeton.edu

Save