• Andreadis, K. M., , and Lettenmaier D. P. , 2006: Assimilating remotely sensed snow observation into a macroscale hydrology model. Adv. Water Resour., 29 , 872886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., , van Leeuwen P. J. , , and Evensen G. , 1998: On the analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 , 17191728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caparrini, F., , Castelli F. , , and Entekhabi D. , 2004: Variational estimation of soil and vegetation turbulent transfer and heat flux parameters from sequences of multisensor imagery. Water Resour. Res., 40 , W12515. doi:10.1029/2004WR003358.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108 , 8842. doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., , and Wood E. F. , 2002: The value of coarse-scale soil moisture observations for regional surface energy balance modeling. J. Hydrometeor., 3 , 467482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., , Reichle R. H. , , Houser P. R. , , Pauwels V. R. N. , , and Verhoest N. E. C. , 2007: Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resour. Res., 43 , W09410. doi:10.1029/2006WR005449.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., , Houser P. R. , , Verhoest N. E. C. , , and Pauwels V. R. N. , 2009: Adaptive soil moisture profile filtering for horizontal information propagation in the independent column-based CLM2.0. J. Hydrometeor., 10 , 766779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derksen, C. A., , Walker A. , , LeDrew E. , , and Goodison B. , 2003: Combining SMMR and SMM/I data for time series analysis of central North American snow water equivalent. J. Hydrometeor., 4 , 304316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13 , 29002921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., , Walker J. P. , , and Houser P. R. , 2005: Factors affecting remotely sensed snow water equivalent uncertainty. Remote Sens. Environ., 97 , 6882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., , Walker J. P. , , Houser P. R. , , and Sun C. , 2007: Scanning multichannel microwave radiometer snow water equivalent assimilation. J. Geophys. Res., 112 , D07108. doi:10.1029/2006JD007209.

    • Search Google Scholar
    • Export Citation
  • Dubayah, R., , Wood E. F. , , and Lavalee D. , 1997: Multiscaling analysis in distributed modeling and remote sensing: An application using soil moisture. Scale, Multiscaling, Remote Sensing, and GIS, M. F. Goodchild and D. A. Quattrochi, Eds., Cambridge University Press, 93–111.

    • Search Google Scholar
    • Export Citation
  • Durand, M., , and Margulis S. A. , 2006: Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalent. J. Hydrometeor., 7 , 443457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, M., , and Margulis S. A. , 2007: Correcting first-order errors in snow water equivalent estimates using a multifrequency, multiscale radiometric data assimilation scheme. J. Geophys. Res., 112 , D13121. doi:10.1029/2006JD008067.

    • Search Google Scholar
    • Export Citation
  • Durand, M., , and Margulis S. A. , 2008: Effects of uncertainty magnitude and accuracy on assimilation of multiscale measurements for snowpack characterization. J. Geophys. Res., 113 , D02105. doi:10.1029/2007JD008662.

    • Search Google Scholar
    • Export Citation
  • Durand, M., , Molotch N. , , and Margulis S. A. , 2008: Merging complementary remote sensing datasets in the context of snow water equivalent. Remote Sens. Environ., 112 , 12121225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M., , Mitchell K. , , Yin L. , , Rogers E. , , Grunmann P. , , Koren V. , , Gayno G. , , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 , 8851. doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53 , 343367.

  • Foster, J. L., , Sun C. , , Walker J. P. , , Kelly R. , , Chang A. , , Dong J. , , and Powell H. , 2005: Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens. Environ., 92 , 187203.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., , and Cohn S. , 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

  • Goodison, B. E., 1978: Accuracy of Canadian snow gage measurements. J. Appl. Meteor., 17 , 15421548.

  • Hamill, T. M., , and Snyder C. , 2000: A hybrid ensemble Kalman filter-3D Variational analysis scheme. Mon. Wea. Rev., 128 , 29052919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, P. R., , Shuttleworth W. J. , , Famiglietti J. S. , , Gupta H. V. , , Syed K. H. , , and Goodrich D. C. , 1998: Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour. Res., 34 , 34053420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H-C., , and Cressie N. , 1996: Spatio-temporal prediction of snow water equivalent using the Kalman filter. Comput. Stat. Data Anal., 22 , 159175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., , Kostelich E. J. , , and Szunyogh I. , 2006: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230 , 112126.

    • Search Google Scholar
    • Export Citation
  • Kelly, R. E., , Chang A. T. , , Tsang L. , , and Foster J. L. , 2003: A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans. Geosci. Remote Sens., 41 , 230242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keppenne, L. C., , and Rienecker M. M. , 2002: Initial testing of a massively parallel ensemble Kalman filter with the Poseidon Isopycnal Ocean General Circulation model. Mon. Wea. Rev., 130 , 29512965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5 , 10491063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., 1999: A multiple scale state-space model of characterizing subgrid scale variability of near-surface soil moisture. IEEE Trans. Geosci. Remote Sens., 37 , 182197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land Information System: An interoperable framework for high resolution land surface modeling. Environ. Model. Software, 21 , 14021415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., , Peters-Lidard C. D. , , Eastman J. L. , , and Kao W-K. , 2008a: An integrated high-resolution hydrometeorological modeling test bed using LIS and WRF. Environ. Model. Software, 23 , 169181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., , Reichle R. H. , , Peters-Lidard C. D. , , Koster R. D. , , Zhan X. , , Crow W. T. , , Eylander J. B. , , and Houser P. R. , 2008b: A land surface data assimilation framework using the Land Information System: Description and applications. Adv. Water Resour., 31 , 14191432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, T., , Zhang X. , , Xie H. , , Wu C. , , Feng Q. , , Huang X. , , and Chen Q. , 2008: Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements. Remote Sens. Environ., 112 , 37503761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liston, G., , and Hiemstra C. A. , 2008: A simple data assimilation system for complex snow distributions (SnowAssim). J. Hydrometeor., 9 , 9891004.

  • Liston, G., , Pielke R. , , and Greene E. , 1999: Improving first-order snow-related deficiencies in a regional cimate model. J. Geophys. Res., 104 , (D16). 1955919567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlin, O., , Chehbouni A. , , Boulet G. , , and Kerr Y. , 2006: Assimilation of disaggregated microwave soil moisture into a hydrologic model using coarse-scale meteorological data. J. Hydrometeor., 7 , 13081322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 , D07S90. doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mote, T. L., , Grundstein A. J. , , Leathers D. J. , , and Robinson D. A. , 2003: A comparison of modeled, remotely sensed, and measured snow water equivalent in the northern Great Plains. Water Resour. Res., 39 , 1209. doi:10.1029/2002WR001782.

    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A , 415428.

  • Pan, M., , and Wood E. F. , 2006: Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter. J. Hydrometeor., 7 , 534547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., , Wood E. F. , , McLaughlin D. B. , , Entekhabi D. , , and Luo L. , 2009: A multiscale ensemble filtering system for hydrologic data assimilation. Part I: Implementation and synthetic experiment. J. Hydrometeor., 10 , 794806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parada, L. M., , and Liang X. , 2003: A downscaling framework for L band radio brightness temperature imagery. J. Geophys. Res., 108 , 8863. doi:10.1029/2003JD003637.

    • Search Google Scholar
    • Export Citation
  • Parada, L. M., , and Liang X. , 2004: Optimal multiscale Kalman filter for assimilation of near-surface soil moisture into land surface models. J. Geophys. Res., 109 , D24109. doi:10.1029/2004JD004745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parada, L. M., , and Liang X. , 2008: Impacts of spatial resolutions and data quality on soil moisture data assimilation. J. Geophys. Res., 113 , D10101. doi:10.1029/2007JD009037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauwels, V. R. N., , and De Lannoy G. J. M. , 2006: Improvement of modeled soil wetness conditions and turbulent fluxes through the assimilation of observed discharge. J. Hydrometeor., 7 , 458477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2007: High-performance earth system modeling with NASA/GSFC’s Land Information System. Innovat. Syst. Software Eng., 3 , 157165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulliainen, J., 2006: Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sens. Environ., 101 , 257269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulliainen, J., , Grandell J. , , and Hallikainen M. , 1999: HUT snow emission model and its applicability for snow water equivalent retrieval. IEEE Trans. Geosci. Remote Sens., 37 , 13781390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , and Koster R. , 2003: Assessing the impact of horizontal error correlations in background fields on soil moisture estimation. J. Hydrometeor., 4 , 12291242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , and Koster R. , 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31 , L19501. doi:10.1029/2004GL020938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , and Koster R. , 2005: Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model. Geophys. Res. Lett., 32 , L02404. doi:10.1029/2004GL021700.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , Entekhabi D. , , and McLaughlin D. B. , 2001: Downscaling of radio brightness measurements for soil moisture estimation: A four dimensional variational data assimilation approach. Water Resour. Res., 37 , 23532364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , McLaughlin D. B. , , and Entekhabi D. , 2002a: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130 , 103114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , Walker J. P. , , Houser P. R. , , and Koster R. D. , 2002b: Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor., 3 , 728740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , Koster R. , , Liu P. , , Mahanama S. P. P. , , Njoku E. G. , , and Owe M. , 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112 , D09108. doi:10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., , Bosilovich M. G. , , Crow W. T. , , Koster R. D. , , Kumar S. V. , , Mahanama S. P. P. , , and Zaitchik B. F. , 2009: Recent advances in land data assimilation at the NASA Global Modeling and Assimilation Office. Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications, S. K. Park and L. Xu, Eds., Springer Verlag, 407–428.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., , and Houser P. R. , 2004: Updating a land surface model with MODIS-derived snow cover. J. Hydrometeor., 5 , 10641075.

  • Slater, A. G., , and Clark M. , 2006: Snow data assimilation via an ensemble Kalman filter. J. Hydrometeor., 7 , 478493.

  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2 , 725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., , Walker J. P. , , and Houser P. R. , 2004: A methodology for snow data assimilation in a land surface model. J. Geophys. Res., 109 , D08108. doi:10.1029/2003JD003765.

    • Search Google Scholar
    • Export Citation
  • Tait, A. B., , Hall D. K. , , Foster J. L. , , and Armstrong R. L. , 2000: Utilizing multiple datasets for snow-cover mapping. Remote Sens. Environ., 72 , 111126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., , and Rodell M. , 2009: Forward-looking assimilation of MODIS-derived snow-covered area into a land surface model. J. Hydrometeor., 10 , 130148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., , Rodell M. , , and Reichle R. H. , 2008: Assimilation of GRACE terrestrial water storage data into a land surface model: Results for the Mississippi River basin. J. Hydrometeor., 9 , 535548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., , McLaughlin D. , , Entekhabi D. , , and Crystal Ng G. , 2008: An ensemble multiscale filter for large nonlinear data assimilation problems. Mon. Wea. Rev., 136 , 678698.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 71 8
PDF Downloads 55 55 5

Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model

View More View Less
  • 1 George Mason University and Center for Research on Environment and Water, Calverton, Maryland, and Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium
  • | 2 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 George Mason University and Center for Research on Environment and Water, Calverton, Maryland
  • | 4 Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium
© Get Permissions
Restricted access

Abstract

Four methods based on the ensemble Kalman filter (EnKF) are tested to assimilate coarse-scale (25 km) snow water equivalent (SWE) observations (typical of passive microwave satellite retrievals) into finescale (1 km) land model simulations. Synthetic coarse-scale observations are assimilated directly using an observation operator for mapping between the coarse and fine scales or, alternatively, after disaggregation (regridding) to the finescale model resolution prior to data assimilation. In either case, observations are assimilated either simultaneously or independently for each location. Results indicate that assimilating disaggregated finescale observations independently (method 1D-F1) is less efficient than assimilating a collection of neighboring disaggregated observations (method 3D-Fm). Direct assimilation of coarse-scale observations is superior to a priori disaggregation. Independent assimilation of individual coarse-scale observations (method 3D-C1) can bring the overall mean analyzed field close to the truth, but does not necessarily improve estimates of the finescale structure. There is a clear benefit to simultaneously assimilating multiple coarse-scale observations (method 3D-Cm) even as the entire domain is observed, indicating that underlying spatial error correlations can be exploited to improve SWE estimates. Method 3D-Cm avoids artificial transitions at the coarse observation pixel boundaries and can reduce the RMSE by 60% when compared to the open loop in this study.

Corresponding author address: Gabriëlle J. M. De Lannoy, Laboratory of Hydrology and Water Management, Ghent University, Coupure links 653, B-9000 Ghent, Belgium. Email: gabrielle.delannoy@ugent.be

Abstract

Four methods based on the ensemble Kalman filter (EnKF) are tested to assimilate coarse-scale (25 km) snow water equivalent (SWE) observations (typical of passive microwave satellite retrievals) into finescale (1 km) land model simulations. Synthetic coarse-scale observations are assimilated directly using an observation operator for mapping between the coarse and fine scales or, alternatively, after disaggregation (regridding) to the finescale model resolution prior to data assimilation. In either case, observations are assimilated either simultaneously or independently for each location. Results indicate that assimilating disaggregated finescale observations independently (method 1D-F1) is less efficient than assimilating a collection of neighboring disaggregated observations (method 3D-Fm). Direct assimilation of coarse-scale observations is superior to a priori disaggregation. Independent assimilation of individual coarse-scale observations (method 3D-C1) can bring the overall mean analyzed field close to the truth, but does not necessarily improve estimates of the finescale structure. There is a clear benefit to simultaneously assimilating multiple coarse-scale observations (method 3D-Cm) even as the entire domain is observed, indicating that underlying spatial error correlations can be exploited to improve SWE estimates. Method 3D-Cm avoids artificial transitions at the coarse observation pixel boundaries and can reduce the RMSE by 60% when compared to the open loop in this study.

Corresponding author address: Gabriëlle J. M. De Lannoy, Laboratory of Hydrology and Water Management, Ghent University, Coupure links 653, B-9000 Ghent, Belgium. Email: gabrielle.delannoy@ugent.be

Save