• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., , Clark E. A. , , Wood A. W. , , Hamlet A. F. , , and Lettenmaier D. P. , 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6 , 9851001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and Schubert W. H. , 1974: Interaction of a cumulus cloud ensemble with large-scale environment. J. Atmos. Sci., 31 , 674701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., , Pegion P. J. , , Schubert S. D. , , and Suarez M. J. , 2000: Atlas of seasonal means simulated by the NSIPP-1 atmospheric GCM. NASA Tech. Memo. NASA/TM-2000-104606/VOL17, 218 pp.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and Coauthors, 2008: Human-induced changes in the hydrology of the western United States. Science, 319 , 10801083.

  • Bates, B. C., , Kundzewicz Z. W. , , Wu S. , , and Palutikof J. P. , Eds. 2008: Climate Change and water. Intergovernmental Panel on Climate Change Tech. Paper VI, 214 pp.

    • Search Google Scholar
    • Export Citation
  • California DWR, 2000: Preparing for California’s next drought: Changes since 1987-1992. 66 pp.

  • Dracup, J. A., , and Kahya E. , 1994: The relationships between United States streamflow and La Nina events. Water Resour. Res., 30 , 21332141.

  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism 1. Theory and observations. Water Resour. Res., 34 , 765776.

  • Findell, K. L., , and Eltahir E. A. B. , 1997: An analysis of the soil moisture-rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33 , 725735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., , Seneviratne S. I. , , Lüthi D. , , and Schär C. , 2007: Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34 , L06707. doi:10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Folland, C., , Shukla J. , , Kinter J. , , and Rodwell M. , 2002: The climate of the twentieth century project. CLIVAR Exchanges, No. 7, International CLIVAR Project Office, Southampton, United Kingdom, 37–39.

    • Search Google Scholar
    • Export Citation
  • Frick, D. M., , Bode D. , , and Salas J. D. , 1990: Effect of drought on urban water supplies 1: Drought analysis. J. Hydraul. Eng., 116 , 733753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. E., , and Barnett T. P. , 1987: Sea-surface temperature, surface wind divergence, and convection over the tropical oceans. Science, 238 , 657659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the standardized precipitation index: A calculation algorithm. J. Amer. Water Resour. Assoc., 35 , 311322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayes, M. J., , Svoboda M. D. , , Wilhite D. A. , , and Vanyarkho O. V. , 1999: Monitoring the 1996 drought using the standardized precipitation index. Bull. Amer. Meteor. Soc., 80 , 429438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., 2004: Climate precursors of multidecadal drought variability in the western United States. Water Resour. Res., 40 , W12504. doi:10.1029/2004WR003350.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , and Kumar A. , 2003: The perfect ocean for drought. Science, 299 , 691694.

  • Hong, S. Y., , and Kalnay E. , 2000: Role of sea surface temperature and soil moisture feedback in the 1998 Oklahoma-Texas drought. Nature, 408 , 842844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, L., , and Peters A. J. , 2003: Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ., 87 , 8598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyantash, J., , and Dracup J. A. , 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83 , 11671180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , and Suarez M. J. , 1996: The influence of land surface moisture retention on precipitation statistics. J. Climate, 9 , 25512567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Suarez M. J. , , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1 , 2646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Suarez M. J. , , Higgins R. W. , , and Van den Dool H. M. , 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30 , 1241. doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Livezey, R. E., , and Chen W. Y. , 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111 , 4659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., , and Timofeyeva M. M. , 2008: The first decade of long-lead U.S. seasonal forecasts. Bull. Amer. Meteor. Soc., 89 , 843854.

  • Lloyd-Hughes, B., , and Saunders M. A. , 2002: A drought climatology for Europe. Int. J. Climatol., 22 , 114.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20 , 130141.

  • Maidment, D. R., Ed. 1993: Handbook of Hydrology. McGraw-Hill, 1424 pp.

  • McCabe, G. J., , Palecki M. A. , , and Betancourt J. L. , 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101 , 41364141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., , Doesken N. J. , , and Kleist J. , 1993: The relationship of drought frequency and duration to timescales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., , and Desai V. , 2005: Drought forecasting using stochastic models. Stochastic Environ. Res. Risk Assess., 19 , 326399.

  • Moorthi, S., , and Suarez M. J. , 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalbantis, I., , and Tsakiris G. , 2009: Assessment of hydrological drought revisited. Water Resour. Manage., 23 , 881897.

  • NOAA, cited. 2009: Climate of 2009—January U.S. standardized precipitation index. [Available online at http://lwf.ncdc.noaa.gov/oa/climate/research/prelim/drought/spi.html].

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2000: Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys., 63 , 71116.

  • Pegion, P. J., , and Kumar A. , 2008: Analysis of the multi-model US CLIVAR drought working group simulations. CLIVAR Exchanges, No. 6, International CLIVAR Project Office, Southampton, United Kingdom, 6–8.

    • Search Google Scholar
    • Export Citation
  • Quan, X., , Hoerling M. , , Whitaker J. , , Bates G. , , and Xu T. , 2006: Diagnosing sources of U.S. seasonal forecast skill. J. Climate, 19 , 32793293.

  • Quiring, S. M., , and Goodrich G. B. , 2008: Nature and causes of the 2002 to 2004 drought in the southwestern United States compared with the historic 1953 to 1957 drought. Climate Res., 36 , 4152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , Parker D. E. , , Horton E. B. , , Folland C. K. , , Alexander L. V. , , Rowell D. P. , , Kent E. C. , , and Kaplan A. , 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redmond, K. T., , and Koch R. W. , 1991: Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices. Water Resour. Res., 27 , 23812399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropeleski, C. F., , and Halpert M. S. , 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11 , 109120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadeghipour, J., , and Dracup J. A. , 1985: Regional frequency analysis of hydrologic multiyear droughts. Water Resour. Bull., 21 , 481487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19 , 34833517.

  • Santer, B. D., and Coauthors, 2007: Identification of human-induced changes in atmospheric moisture content. Proc. Natl. Acad. Sci. USA, 104 , 1524815253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , Suarez M. J. , , Pegion P. J. , , Koster R. D. , , and Bacmeister J. D. , 2004a: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17 , 485503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , Suarez M. J. , , Pegion P. J. , , Koster R. D. , , and Bacmeister J. D. , 2004b: On the cause of the 1930s Dust Bowl. Science, 303 , 18551859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , Koster R. D. , , Hoerling M. P. , , Seager R. , , Lettenmaier D. , , Kumar A. , , and Gutzler D. , 2007: Predicting drought on seasonal-to-decadal timescales. Bull. Amer. Meteor. Soc., 88 , 16251630.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , Suarez M. J. , , Pegion P. J. , , Koster R. D. , , and Bacmeister J. T. , 2008: Potential predictability of long-term drought and pluvial conditions in the U.S. Great Plains. J. Climate, 21 , 802816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., 2007: The turn of the century North American drought: Global context, dynamics, and past analogs. J. Climate, 20 , 55275552.

  • Seager, R., , Kushnir Y. , , Herweijer C. , , Naik N. , , and Velez J. , 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18 , 40654088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America. Science, 316 , 11811184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., , Kushnir Y. , , Ting M. , , Cane M. , , Naik N. , , and Miller J. , 2008: Would advanced knowledge of the 1930s SSTs have allowed prediction of the Dust Bowl drought? J. Climate, 21 , 32613281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , and Randel W. J. , 2007: Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res., 112 , D20113. doi:10.1029/2007JD008861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiler, R. A., , Hayes M. J. , , and Bressan L. , 2002: Using the standardized precipitation index for flood risk monitoring. Int. J. Climatol., 22 , 13651376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Goteti G. , , Wen F. , , and Wood E. F. , 2004: A simulated soil moisture based drought analysis for the United States. J. Geophys. Res., 109 , D24108. doi:10.1029/2004JD005182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Coauthors, 2000: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 81 , 25932606.

  • Sims, A. P., , Niyogi D. D. S. , , and Raman S. , 2002: Adopting drought indices for estimating soil moisture: A North Carolina case study. Geophys. Res. Lett., 29 , 1183. doi:10.1029/2001GL013343.

    • Search Google Scholar
    • Export Citation
  • Steinemann, A., , and Cavalcanti L. F. N. , 2006: Developing multiple indicators and triggers for drought plans. J. Water Resour. Plann. Manage., 132 , 164174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straus, D., , Shukla J. , , Paulino D. , , Schubert S. D. , , Suarez M. J. , , Pegion P. J. , , and Kumar A. , 2003: Predictability of the seasonal mean atmospheric circulation during autumn, winter, and spring. J. Climate, 16 , 36293649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., , and Takacs L. L. , 1995: Documentation of the AIRES/GEOS Dynamical Core Version 2. NASA Tech. Memo. NASA-TM-104606-VOL-5, 56 pp.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., , and Chervin R. M. , 1986: A comparison of month-to-month persistence of anomalies in a general circulation model and in the earth’s atmosphere. J. Atmos. Sci., 43 , 14541466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and Zwiers F. W. , 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wilhite, D. E., , and Buchanan-Smith M. , 2005: Drought as hazard: Understanding the natural and social context. Drought and Water Crises: Science, Technology, and Management Issues, Taylor and Francis, 3–32.

    • Search Google Scholar
    • Export Citation
  • WRCC, cited. 2009: One-month standardized precipitation index through the end of January 2009. [Available online at http://www.wrcc.dri.edu/cgi-bin/spiFmap.pl?spi01].

    • Search Google Scholar
    • Export Citation
  • Wu, R. G., , and Kirtman B. P. , 2006: Changes in spread and predictability associated with ENSO in an ensemble of coupled GCM simulations. J. Climate, 19 , 43784396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zar, J. H., 1999: Biostatistical Analysis. 4th ed. Prentice Hall, 929 pp.

  • Zwiers, F. W., , Wang X. L. , , and Sheng J. , 2000: Effects of specifying bottom boundary conditions in an ensemble of atmospheric GCM simulations. J. Geophys. Res., 105 , 72957315.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 2
PDF Downloads 11 11 0

Influence of SST Forcing on Stochastic Characteristics of Simulated Precipitation and Drought

View More View Less
  • 1 Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado
  • | 2 Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California
  • | 3 Lawrence Livermore National Laboratory, Livermore, and Climate Central, Inc., Palto Alto, California
  • | 4 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

Recent studies demonstrate that ocean–atmosphere forcing by persistent sea surface temperature (SST) anomalies is a primary driver of seasonal-to-interannual hydroclimatic variability, including drought events. Other studies, however, conclude that although SST anomalies influence the timing of drought events, their duration and magnitude over continental regions is largely governed by land–atmosphere feedbacks. Here the authors evaluate the direct influence of SST anomalies on the stochastic characteristics of precipitation and drought in two ensembles of AGCM simulations forced with observed (interannually varying) monthly SST and their climatological annual cycle, respectively. Results demonstrate that ocean–atmosphere forcing contributes to the magnitude and persistence of simulated seasonal precipitation anomalies throughout the tropics but over few mid- and high-latitude regions. Significant autocorrelation of simulated seasonal anomalies over oceans is directly forced by persistent SST anomalies; over land, SST anomalies are shown to enhance autocorrelation associated with land–atmosphere feedbacks. SST anomalies are shown to have no significant influence on simulated drought frequency, duration, or magnitude over most midlatitude land regions. Results suggest that severe and sustained drought events may occur in the absence of persistent SST forcing and support recent conclusions that ocean–atmosphere forcing primarily influences the timing of drought events, while duration and magnitude are governed by other mechanisms such as land–atmosphere feedbacks. Further analysis is needed to assess the potential model dependence of results and to quantify the relative contribution of land–atmosphere feedbacks to the long-term stochastic characteristics of precipitation and drought.

* Current affiliation: Climate Central, Inc., Palo Alto, California

+ Current affiliation: NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Corresponding author address: Ian M. Ferguson, Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80403. Email: imfergus@mines.edu

Abstract

Recent studies demonstrate that ocean–atmosphere forcing by persistent sea surface temperature (SST) anomalies is a primary driver of seasonal-to-interannual hydroclimatic variability, including drought events. Other studies, however, conclude that although SST anomalies influence the timing of drought events, their duration and magnitude over continental regions is largely governed by land–atmosphere feedbacks. Here the authors evaluate the direct influence of SST anomalies on the stochastic characteristics of precipitation and drought in two ensembles of AGCM simulations forced with observed (interannually varying) monthly SST and their climatological annual cycle, respectively. Results demonstrate that ocean–atmosphere forcing contributes to the magnitude and persistence of simulated seasonal precipitation anomalies throughout the tropics but over few mid- and high-latitude regions. Significant autocorrelation of simulated seasonal anomalies over oceans is directly forced by persistent SST anomalies; over land, SST anomalies are shown to enhance autocorrelation associated with land–atmosphere feedbacks. SST anomalies are shown to have no significant influence on simulated drought frequency, duration, or magnitude over most midlatitude land regions. Results suggest that severe and sustained drought events may occur in the absence of persistent SST forcing and support recent conclusions that ocean–atmosphere forcing primarily influences the timing of drought events, while duration and magnitude are governed by other mechanisms such as land–atmosphere feedbacks. Further analysis is needed to assess the potential model dependence of results and to quantify the relative contribution of land–atmosphere feedbacks to the long-term stochastic characteristics of precipitation and drought.

* Current affiliation: Climate Central, Inc., Palo Alto, California

+ Current affiliation: NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Corresponding author address: Ian M. Ferguson, Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80403. Email: imfergus@mines.edu

Save