Error Propagation of Remote Sensing Rainfall Estimates in Soil Moisture Prediction from a Land Surface Model

Efthymios Serpetzoglou Institute of Inland Waters, Hellenic Centre for Marine Research, Anávissos, Attica, Greece

Search for other papers by Efthymios Serpetzoglou in
Current site
Google Scholar
PubMed
Close
,
Emmanouil N. Anagnostou Institute of Inland Waters, Hellenic Centre for Marine Research, Anávissos, Attica, Greece, and Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Emmanouil N. Anagnostou in
Current site
Google Scholar
PubMed
Close
,
Anastasios Papadopoulos Institute of Inland Waters, Hellenic Centre for Marine Research, Anávissos, Attica, Greece

Search for other papers by Anastasios Papadopoulos in
Current site
Google Scholar
PubMed
Close
,
Efthymios I. Nikolopoulos Institute of Inland Waters, Hellenic Centre for Marine Research, Anávissos, Attica, Greece, and Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Efthymios I. Nikolopoulos in
Current site
Google Scholar
PubMed
Close
, and
Viviana Maggioni Institute of Inland Waters, Hellenic Centre for Marine Research, Anávissos, Attica, Greece, and Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Search for other papers by Viviana Maggioni in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The study presents an in-depth investigation of the properties of remotely sensed rainfall error propagation in the prediction of near-surface soil moisture from a land surface model (LSM). Specifically, two error sources are compared: rainfall forcing due to estimation error by remote sensing techniques and the representation of land–atmospheric processes due to LSM uncertainty [the Community Land Model, version 3.5 (CLM3.5), was used in this particular study]. CLM3.5 is forced by three remotely sensed precipitation products, namely, two satellite-based estimates—NASA’s Tropical Rainfall Measuring Mission (TRMM) multisatellite precipitation analysis and NOAA’s Climate Prediction Center morphing technique (CMORPH)—and a rain gauge-adjusted radar–rainfall product from the Weather Surveillance Radar-1988 Doppler (WSR-88D) network. The error analysis is performed for the warm seasons of 2004 and 2006 and is facilitated through the use of in situ measurements of soil moisture, rainfall, and other meteorological variables from a network of stations capturing the state of Oklahoma (Oklahoma Mesonet). The study also presents a rigorous benchmarking of the Mesonet network as to its accuracy in deriving area rainfall estimates at the resolution of satellite products (0.25° and 3 h) through comparisons against the most definitive measurements of a smaller-yet-denser network of rain gauges in southwestern Oklahoma (Micronet). The study compares error statistics between modeling and precipitation error sources and between the various remote sensing techniques. Results are contrasted between the relatively moist summer period of 2004 to the drier summer period of 2006, indicating model and error propagation dependencies. An intercomparison between rainfall and modeling error shows that the two error sources are of similar magnitudes in the case of high modeling accuracy (i.e., 2004), whereas the contribution of rainfall forcing error to the uncertainty of soil moisture prediction can be lower when the model’s efficiency skill is relatively low (i.e., 2006).

Corresponding author address: Emmanouil Anagnostou, Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269. Email: manos@engr.uconn.edu

Abstract

The study presents an in-depth investigation of the properties of remotely sensed rainfall error propagation in the prediction of near-surface soil moisture from a land surface model (LSM). Specifically, two error sources are compared: rainfall forcing due to estimation error by remote sensing techniques and the representation of land–atmospheric processes due to LSM uncertainty [the Community Land Model, version 3.5 (CLM3.5), was used in this particular study]. CLM3.5 is forced by three remotely sensed precipitation products, namely, two satellite-based estimates—NASA’s Tropical Rainfall Measuring Mission (TRMM) multisatellite precipitation analysis and NOAA’s Climate Prediction Center morphing technique (CMORPH)—and a rain gauge-adjusted radar–rainfall product from the Weather Surveillance Radar-1988 Doppler (WSR-88D) network. The error analysis is performed for the warm seasons of 2004 and 2006 and is facilitated through the use of in situ measurements of soil moisture, rainfall, and other meteorological variables from a network of stations capturing the state of Oklahoma (Oklahoma Mesonet). The study also presents a rigorous benchmarking of the Mesonet network as to its accuracy in deriving area rainfall estimates at the resolution of satellite products (0.25° and 3 h) through comparisons against the most definitive measurements of a smaller-yet-denser network of rain gauges in southwestern Oklahoma (Micronet). The study compares error statistics between modeling and precipitation error sources and between the various remote sensing techniques. Results are contrasted between the relatively moist summer period of 2004 to the drier summer period of 2006, indicating model and error propagation dependencies. An intercomparison between rainfall and modeling error shows that the two error sources are of similar magnitudes in the case of high modeling accuracy (i.e., 2004), whereas the contribution of rainfall forcing error to the uncertainty of soil moisture prediction can be lower when the model’s efficiency skill is relatively low (i.e., 2006).

Corresponding author address: Emmanouil Anagnostou, Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269. Email: manos@engr.uconn.edu

Save
  • Anagnostou, E. N., Maggioni V. , Nikolopoulos E. I. , Meskele T. , Hossain F. , and Papadopoulos A. , 2010: Benchmarking high-resolution global satellite rainfall products to radar and rain-gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens., 48 , 16671683. doi:10.1109/TGRS.2009.2034736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., Viterbo P. , Miller M. J. , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124 , 362383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85 , 16731688.

  • Beven, K. J., and Kirkby M. J. , 1979: A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24 , 4369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brock, F. V., Crawford K. C. , Elliott R. L. , Cuperus G. W. , Stadler S. J. , Johnson H. L. , and Eilts M. D. , 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12 , 519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Land surface model spin-up behaviour in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 108 , D228845. doi:10.1029/2002JD003316.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., and Viterbo P. , 2007: Assimilation of screen-level variables in ECMWF’s Integrated Forecast System: A study on the impact on the forecast quality and analyzed soil moisture. Mon. Wea. Rev., 135 , 300314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88 , 4764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2004: The Hydrosphere State (Hydros) Satellite Mission: An earth system pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Trans. Geosci. Remote Sens., 42 , 21842195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., Seneviratne S. I. , Vidale P. L. , Lüthi D. , and Schär C. , 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20 , 50815099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., Breidenbach J. P. , Seo D. J. , Miller D. A. , and O’Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., Meng J. , Rodell M. , and Houser P. , 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on Global Land Data Assimilation System land surface states. J. Hydrometeor., 6 , 573598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Anagnostou E. N. , 2004: Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction. J. Geophys. Res., 109 , D07102. doi:10.1029/2003JD003986.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Anagnostou E. N. , 2005a: Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture. Adv. Water Resour., 28 , 13361350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Anagnostou E. N. , 2005b: Using a multi-dimensional satellite rainfall error model to characterize uncertainty in soil moisture fields simulated by an offline land surface model. Geophys. Res. Lett., 32 , L15402. doi:10.1029/2005GL023122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, F., and Anagnostou E. N. , 2006: A two-dimensional satellite rainfall error model. IEEE Trans. Geosci. Remote Sens., 44 , 15111522.

  • Hossain, F., and Huffman G. J. , 2008: Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J. Hydrometeor., 9 , 563575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., Waldteufel P. , Wigneron J. P. , Martinuzzi J. M. , Font J. , and Berger M. , 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39 , 17291735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Suarez M. J. , 2001: Soil moisture memory in climate models. J. Hydrometeor., 6 , 558570.

  • Koster, R. D., and Coauthors, 2004a: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5 , 10491063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004b: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21 , 14021415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and Chase T. N. , 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res., 112 , G01023. doi:10.1029/2006JG000168.

    • Search Google Scholar
    • Export Citation
  • Leese, J., Jackson T. , Pitman A. , and Dirmeyer P. , 2001: Meeting summary: GEWEX/BAHC International Workshop on Soil Moisture Monitoring, Analysis, and Prediction for Hydrometeorological and Hydroclimatological Applications. Bull. Amer. Meteor. Soc., 82 , 14231430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm].

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 , D07S90. doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., Yang Z-L. , Dickinson R. E. , and Gulden L. E. , 2005: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res., 110 , D21106. doi:10.1029/2005JD006111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 173 pp.

  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113 , G01021. doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, A., Serpetzoglou E. , and Anagnostou E. N. , 2008: Improving NWP through radar rainfall-driven land surface parameters: A case study on convective precipitation forecasting. Adv. Water Res., 31 , 14561469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , Dong J. , and Berg A. A. , 2004: Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation. J. Hydrometeor., 5 , 430442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , Liu P. , Mahanama S. P. P. , Njoku E. G. , and Owe M. , 2007: Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J. Geophys. Res., 112 , D09108. doi:10.1029/2006JD008033.

    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Y. , Srinivasan G. , Entin J. K. , Hollinger S. E. , Speranskaya N. A. , Liu S. , and Namkhai A. , 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81 , 12811299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the Southern Great Plains during the warm season. J. Geophys. Res., 108 , 8846. doi:10.1029/2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Rodell, M., Houser P. R. , Berg A. A. , and Famiglietti J. S. , 2005: Evaluation of 10 methods for initializing a land surface model. J. Hydrometeor., 6 , 146155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., and Coauthors, 2004: An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 109 , D01S90. doi:10.1029/2002JD003309.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 2007: International Global Precipitation Measurement (GPM) program and mission: An overview. Measuring Precipitation from Space: EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Springer, 611–654.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., Hsu K-L. , Gao X. , Gupta H. V. , Imam B. , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stöckli, R., and Coauthors, 2008: Use of FLUXNET in the Community Land Model development. J. Geophys. Res., 113 , G01025. doi:10.1029/2007JG000562.

    • Search Google Scholar
    • Export Citation
  • Tian, X., Xie Z. , and Dai A. , 2008: A land surface soil moisture data assimilation system based on the dual-UKF method and the Community Land Model. J. Geophys. Res., 113 , D14127. doi:10.1029/2007JD009650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y., Peters-Lidard C. D. , Choudhury B. J. , and Garcia M. , 2007: Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8 , 11651183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. P., and Houser P. , 2004: Requirements of a global near-surface soil moisture satellite mission: Accuracy, repeat time, and spatial resolution. Adv. Water Resour., 27 , 785801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. P., Houser P. , and Reichle R. , 2003: New technologies require advances in hydrologic data assimilation. Eos, Trans. Amer. Geophys. Union, 84 .doi:10.1029/2003EO490002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 242 95 6
PDF Downloads 165 32 2